Top Quark Spin Correlations with the CMS Detector

Author:   Jason R. Thieman
Publisher:   Springer International Publishing AG
Edition:   2024 ed.
ISBN:  

9783031761164


Pages:   166
Publication Date:   05 December 2024
Format:   Hardback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $336.35 Quantity:  
Add to Cart

Share |

Top Quark Spin Correlations with the CMS Detector


Add your own review!

Overview

The differential top quark precision measurements of polarizations and spin correlations presented in this dissertation may potentially lead to breakthroughs in several key areas: observing quantum entanglement and Bell's Inequality violations in a hadronic system, discovering toponium, illuminating supersymmetry, interpreting field theories beyond the Standard Model, and advancing the understanding of electroweak vacuum stability. Additionally, this thesis provides a significantly improved understanding of CMS detector lepton trigger efficiencies, which has greatly enhanced the search for Lorentz invariance violation in top quark events, boosting the sensitivity by greater than a factor of 100. Finally, the thesis includes TCAD simulations that explore the feasibility of using the initial transient induced current, as described by the Ramo-Shockley Theorem, to achieve the picosecond timing precision in silicon pixel detectors needed for four-dimensional tracking.

Full Product Details

Author:   Jason R. Thieman
Publisher:   Springer International Publishing AG
Imprint:   Springer International Publishing AG
Edition:   2024 ed.
ISBN:  

9783031761164


ISBN 10:   3031761162
Pages:   166
Publication Date:   05 December 2024
Audience:   Professional and scholarly ,  College/higher education ,  Professional & Vocational ,  Postgraduate, Research & Scholarly
Format:   Hardback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1 Motivation and Theoretical Overview.- 2 The Compact Muon Experiment at the Large Hadron Collider.- 3 Top Quark Physics at the Large Hadron Collider.- 4 Monte Carlo Event Simulation.- 5 Datasets, Event Selection, and t¯t Kinematic Reconstruction.- 6 Measurements of Differential Cross-Sections.- 7 Results.- 8 Summary and Outlook.1 Motivation and Theoretical Overview.- 2 The Compact Muon Experiment at the Large Hadron Collider.- 3 Top Quark Physics at the Large Hadron Collider.- 4 Monte Carlo Event Simulation.- 5 Datasets, Event Selection, and t¯t Kinematic Reconstruction.- 6 Measurements of Differential Cross-Sections.- 7 Results.- 8 Summary and Outlook.

Reviews

Author Information

Jason is deeply passionate about the elementary interactions between matter and energy and their application in sensor and technology development. During his Ph.D. work on Large Hadron Collider experiments, he focused on precision measurements of top quark properties and simulating and testing prototype silicon detectors in radiation environments. Currently, as a physicist and systems engineer, Jason is developing new, advanced methods for testing single event effects in 3D heterogeneously integrated electronic components and circuits. He aims to revolutionize the design process for radiation-hardened electronics, facilitating the rapid deployment of next-generation technologies for space and other applications.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

RGJUNE2025

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List