Introduction to Unsteady Aerodynamics and Dynamic Aeroelasticity

Author:   Luciano Demasi
Publisher:   Springer International Publishing AG
ISBN:  

9783031500565


Pages:   831
Publication Date:   13 June 2025
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $171.57 Quantity:  
Add to Cart

Share |

Introduction to Unsteady Aerodynamics and Dynamic Aeroelasticity


Add your own review!

Overview

Aeroelasticity is an essential discipline for the design of airplanes, unmanned systems, and innovative configurations. This book introduces the subject of unsteady aerodynamics and dynamic aeroelasticity by presenting industry-standard techniques, such as the Doublet Lattice Method for nonplanar wing systems. “Introduction to Unsteady Aerodynamics and Dynamic Aeroelasticity'' is a useful reference for aerospace engineers and users of NASTRAN and ZAERO but is also an excellent complementary textbook for senior undergraduate and graduate students.   The theoretical material includes: ·        Fundamental equations of aerodynamics. ·        Concepts of Velocity and Acceleration Potentials. ·        Theory of small perturbations. ·        Virtual displacements and work, Hamilton's Principle, and Lagrange's Equations. ·        Aeroelastic equations expressed in the time, Laplace, and Fourier domains. ·       Concept of Generalized Aerodynamic Force Matrix. ·       Complete derivation of the nonplanar kernel for unsteady aerodynamic analyses. ·       Detailed derivation of the Doublet Lattice Method. ·        Linear Time-Invariant systems and stability analysis. ·        Rational function approximation for the generalized aerodynamic force matrix. ·        Fluid-structure boundary conditions and splining. ·        Root locus technique. ·        Techniques to find the flutter point: k, k-E, p-k, non-iterative p-k, g, second-order g, GAAM, p, p-L, p-p, and CV methods.    

Full Product Details

Author:   Luciano Demasi
Publisher:   Springer International Publishing AG
Imprint:   Springer International Publishing AG
ISBN:  

9783031500565


ISBN 10:   3031500563
Pages:   831
Publication Date:   13 June 2025
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Finite-Part Integrals.- Convolution and Duhamel Integrals.- Laplace and Fourier Transforms.- Review of the Least Square Method.-     Vector Identities Used in Aerodynamics.- Reynolds Transport Theorem, Isentropic, Continuity, and Momentum Equations.- Vorticity, and Kelvin’s Circulation Theorem.-   Velocity Potential.- The Biot Savart Law for Incompressible Fluids.- The Fluid-Structure Boundary Condition.- The Aerodynamic Force for the Steady Incompressible Ideal Flow.-    Small Perturbation Theory.- Small Perturbation Acceleration Potential.- Compressible Fluid at Rest.- Compressible Fluid in Motion.- Compressible Fluid in Motion: the Doublet Solution.- Theoretical Aerodynamic Modeling of Wings.- Steady Incompressible Ideal Flow and Modeling of Finite Wings .- Two-Dimensional Unsteady Incompressible Flow.- Harmonic Motion, Reduced Frequency, and Kernel.- The Generalized Aerodynamic Force for the Continuous System.- Finite-Element Time Domain Aeroelastic Equations.- Laplace and Fourier Transformed Discrete Aeroelastic Equations.- The Unsteady Kernel.- Industry Standard Doublet Lattice Implementation.- Structural Dynamics: the Concept of Free Vibration Modes.- From the Structural Mesh to the Aerodynamic Mesh: Splining.- Generalized Aerodynamic Force Matrix and Rational Function Approximation.- Equations of Motion in the Laplace Domain with the Use of Rational Function Approximation.- Stability Analysis in the Laplace Domain.- Linear Time-Invariant Systems and Stability.- Linear Time-Invariant Aeroelastic Systems.- Classical Flutter, State Space Model, and Root Locus.- Introduction to the Concept of Body Freedom Flutter.- An Introduction to Nonlinear Aeroelasticity.- An Introduction to Nonlinear Dynamics.

Reviews

Author Information

Dr. Luciano Demasi is Professor of Aerospace Engineering, San Diego State University, San Diego, CA. He received the “Outstanding Contribution to Aerospace Research (2023)” award from the American Institute of Aeronautics and Astronautics (AIAA) and is an AIAA associate fellow. Luciano Demasi is ranked in top 2% of authors worldwide over a total of 55,422 researchers and published more than 100 articles in the areas of aerodynamics, structures, and aeroelasticity.     

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

RGJUNE2025

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List