|
![]() |
|||
|
||||
OverviewPresenting an analysis of the water relationships of the major groups of organisms: fungi, plants and animals, the text examines water stress at all levels of biological organization. Topics covered include: 1) organic osmotic agents: their distributions, modes of action, and mechanisms of regulation; 2) desiccation stress; mechanisms for preserving cellu lar integrity under conditions of low cellular water activity; 3) water stress and water compartmentation in plants; and 4) freezing stress: the prevention and regulation of ice formation in biological fluids, and mechanisms for overcoming the damaging effects of low temperatures on cellular integrity. Common adaptive strategies in diverse organisms are emphasized, as well as the fundamental physical-chemical properties of aqueous solutions that establish the nature of the interactions among water, low molecular weight solutes and macromolecules. Full Product DetailsAuthor: George N. Somero , Charles B. Osmond , Carla L. BolisPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: Softcover reprint of the original 1st ed. 1992 Dimensions: Width: 15.50cm , Height: 2.00cm , Length: 23.50cm Weight: 0.587kg ISBN: 9783642766848ISBN 10: 3642766846 Pages: 371 Publication Date: 23 December 2011 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsI Osmotic Solutes: Evolution, Function, and Regulation.- 1: Adapting to Water Stress: Convergence on Common Solutions.- 2: Compatible and Counteracting Aspects of Organic Osmolytes in Mammalian Kidney Cells in Vivo and in Vitro.- 3: Molecular Basis for Accumulation of Compatible Osmolytes in Mammalian Cells.- 4: Compatible Solute Synthesis and Compartmentation in Higher Plants.- 5: Osmotic Control of Transcription of the pro U Operon of Salmonella typhimurium.- 6: A Physicochemical Basis for the Selection of Osmolytes by Nature.- II Desiccation Stress.- 7: Membrane Integrity in Anhydrobiotic Organisms: Toward a Mechanism for Stabilizing Dry Cells.- 8: Water Content and Metabolic Organization in Anhydrobiotic Animals.- 9: Macroautophagy Triggered by Sucrose Starvation in Higher Plant Cells: Analysis of a Model for Prolonged Carbon Deprivation Under Water Stress.- 10: Desiccation Tolerance in Vegetative Plant Tissues and Seeds: Protein Synthesis in Relation to Desiccation and a Potential Role for Protection and Repair Mechanisms.- 11: Water in Dry Organisms.- III Plant-Water Compartmentation and Water Stress.- 12: The Biophysics of Plant Water: Compartmentation, Coupling with Metabolic Processes, and Flow of Water in Plant Roots.- 13: Water Compartmentation in Plant Tissue: Isotopic Evidence.- 14: Photosynthetic Water Oxidation and Water Stress in Plants.- 15: Desiccation and Freezing Phenomena for Plants with Large Water Capacitance — Cacti and Espeletias.- IV Freezing Stress.- 16: Ice Nucleating Agents in Cold-Hardy Insects.- 17: Hemolymph Proteins Involved in the Cold Tolerance of Terrestrial Arthropods: Antifreeze and Ice Nucleator Proteins.- 18: The Role of Antifreeze Glycopeptides and Peptides in the Survival of Cold-water Fishes.- 19: Freeze Thaw Injury andCryoprotection of Thylakoid Membranes.- 20: Freeze-Induced Dehydration and Membrane Destabilization in Plants.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |