|
![]() |
|||
|
||||
OverviewThis paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results. Hartwig, Jason W. and McQuillen, John B. and Chato, David J. Glenn Research Center NASA/TM-2013-216569, AIAA Paper 2013-3982, E-10057, GRC-E-DAA-TN10057 Full Product DetailsAuthor: National Aeronautics and Space Adm NasaPublisher: Independently Published Imprint: Independently Published Dimensions: Width: 21.60cm , Height: 0.10cm , Length: 27.90cm Weight: 0.082kg ISBN: 9781794401211ISBN 10: 1794401210 Pages: 24 Publication Date: 23 January 2019 Audience: General/trade , General Format: Paperback Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |