|
|
|||
|
||||
OverviewElementare Resultate aus der Komplexitatstheorie werden in diesem Buch ebenso behandelt wie auch die Themen Polynomialzeithierarchie, probabilistische Klassen oder die Hausdorffsche Hierarchie, Funktionalklassen und Zahlklassen. Das Buch ist aus mehrjahrigen Vorlesungen des Autors uber Komplexitatstheorie entstanden. Full Product DetailsAuthor: Gerd WechsungPublisher: Springer Fachmedien Wiesbaden Imprint: Vieweg+Teubner Verlag Edition: 2000 ed. Volume: 32 Dimensions: Width: 16.10cm , Height: 1.70cm , Length: 23.50cm Weight: 0.500kg ISBN: 9783519003151ISBN 10: 3519003155 Pages: 312 Publication Date: 30 October 2000 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Language: German Table of ContentsSymbolverzeichnis.- 1 Hierarchien von Komplexitätsklassen.- 1.1 Komplexitätsmaße und -klassen.- 1.2 Existenz beliebig schwieriger Probleme.- 1.3 Kompression und Beschleunigung.- 1.4 Hierarchiesätze.- 1.5 Untere Schranken.- 2 Zwischen L und PSPACE.- 2.1 Einfache Inklusionsbeziehungen.- 2.2 Komplexitätsbeschränkte m-Reduktionen.- 2.3 Vollständige Probleme in NL.- 2.4 Vollständige Probleme in P.- 2.5 Das P-NP-Problem.- 3 Die Polynomialzeithierarchie.- 3.1 Weitere Reduktionsbegriffe.- 3.2 Die Polynomialzeithierarchie.- 3.3 Akzeptierungstypen für $$\Delta _2^P $$ und $$\Theta _2^P $$.- 3.4 Alternierende Maschinen.- 3.5 Alternierende Komplexitätsklassen.- 3.6 Weitere Vollständigkeitsresultate.- 3.7 Blattsprachenklassen.- 3.8 Relativierungen.- 4 Einige besondere Resultate.- 4.1 Der Satz von Savitch.- 4.2 coNSPACE-Klassen.- 4.3 Blockrespektierende Berechnungen.- 4.4 Raum ist besser als Zeit.- 4.5 DLINTIME ? NUNTIME.- 5 Dünne vollständige bzw. harte Mengen.- 5.1 Dünne Mengen.- 5.2 Nichtuniforme Berechnungen.- 5.3 Das Isomorphieproblem.- 5.4 Dünne btt-harte Mengen für NP.- 5.5 Dünne T-harte Mengen für NP.- 6 Die Hausdorffsche Hierarchie über NP.- 6.1 Der Boolesche Abschluß von NP.- 6.2 Akzeptierungstypen für die BHk(NP).- 6.3 Erweiterung der Hausdorffschen Hierarchie.- 6.4 tt-Charakterisierung der BHk(NP).- 6.5 Die Fragehierarchie.- 6.6 Vollständige Probleme.- 6.7 Kann die Hausdorffsche Hierarchie endlich sein?.- 6.8 Verschiedene Orakel.- 7 Zählklassen.- 7.1 Zählklassen von endlichem Typ.- 7.2 Die einfachste Zählklasse.- 7.3 Die Klasse ?P.- 7.4 Längenabhängige Akzeptierungstypen.- 7.5 Promise-Klassen.- 8 Probabilistische Klassen.- 8.1 Die Klassen RP und ZPP.- 8.2 Die Klassen PP und G=P.- 8.3 Beschränkte Fehlerwahrscheinlichkeit.- 8.4 DerMehrheitsquantor.- 8.5 Die Arthur-Merlin-Hierarchie.- 8.6 Operatoren.- 8.7 Die Ergebnisse von Toda.- 9 Funktionenklassen.- 9.1 Funktionen- und Relationenanaloga zu P und NP.- 9.2 Verfeinerungen von Relationen.- 9.3 Anzahl von Lö.- 9.4 Konstruktion von Lösungen.- 9.5 Selbstreduzierbarkeit.- 9.6 Optimale Lösungen.- 10 Lowness und Highness.- 10.1 Die low- und die high-Hierarchie.- 10.2 Einordnung konkreter Klassen.- 10.3 Selektivität.- 10.4 Graphisomorphie.- A Mathematische Grundlagen.- A.1 Logische Grundbegriffe.- A.2 Mengen, Relationen, Funktionen.- A.2.1 Mengen.- A.2.2 Relationen.- A.2.3 Funktionen.- A.2.4 Asymptotisches Wachstum.- A.3 Formale Sprachen.- A.4 Turingmaschinen und Berechenbarkeit.- Autorenverzeichnis.- Sachwortverzeichnis.ReviewsAuthor InformationProf. Dr. Gerd Wechsung, Universität Jena Tab Content 6Author Website:Countries AvailableAll regions |