|
![]() |
|||
|
||||
OverviewThis book combines the advantages of high-dimensional data visualization and machine learning in the context of identifying complex n-D data patterns. It vastly expands the class of reversible lossless 2-D and 3-D visualization methods, which preserve the n-D information. This class of visual representations, called the General Lines Coordinates (GLCs), is accompanied by a set of algorithms for n-D data classification, clustering, dimension reduction, and Pareto optimization. The mathematical and theoretical analyses and methodology of GLC are included, and the usefulness of this new approach is demonstrated in multiple case studies. These include the Challenger disaster, world hunger data, health monitoring, image processing, text classification, market forecasts for a currency exchange rate, computer-aided medical diagnostics, and others. As such, the book offers a unique resource for students, researchers, and practitioners in the emerging field of Data Science. Full Product DetailsAuthor: Boris KovalerchukPublisher: Springer International Publishing AG Imprint: Springer International Publishing AG Edition: 1st ed. 2018 Volume: 144 Weight: 0.815kg ISBN: 9783319730394ISBN 10: 3319730398 Pages: 317 Publication Date: 26 January 2018 Audience: College/higher education , Professional and scholarly , Undergraduate , Postgraduate, Research & Scholarly Format: Hardback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsMotivation, Problems and Approach.- General Line Coordinates (GLC).- Theoretical and Mathematical Basis of GLC.- Adjustable GLCs for decreasing occlusion and pattern simplification.- GLC Case Studies.- Discovering visual features and shape perception capabilities in GLC.- Interactive Visual Classification, Clustering and Dimension Reduction with GLC-L.- Knowledge Discovery and Machine Learning for Investment Strategy with CPC.ReviewsThe book is a good suggestion for a data scientist or someone who would like to specialise on GLCs ... it provides a helpful introduction along with a wide variety of case studies that help any scientist to familiarise with this method. (Angeliki Katsenou, Perception, Vol. 47 (12), December, 2018) Author InformationTab Content 6Author Website:Countries AvailableAll regions |