Vibrations and Impedances of Rectangular Plates with Free Boundaries

Author:   Peter Hagedorn ,  Klaus Kelkel ,  Jörg Wallaschek
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   Softcover reprint of the original 1st ed. 1986
Volume:   23
ISBN:  

9783540170433


Pages:   154
Publication Date:   01 October 1986
Format:   Paperback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $65.87 Quantity:  
Add to Cart

Share |

Vibrations and Impedances of Rectangular Plates with Free Boundaries


Add your own review!

Overview

Full Product Details

Author:   Peter Hagedorn ,  Klaus Kelkel ,  Jörg Wallaschek
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   Softcover reprint of the original 1st ed. 1986
Volume:   23
Dimensions:   Width: 17.00cm , Height: 0.80cm , Length: 24.40cm
Weight:   0.296kg
ISBN:  

9783540170433


ISBN 10:   354017043
Pages:   154
Publication Date:   01 October 1986
Audience:   College/higher education ,  Professional and scholarly ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Paperback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

1. Introduction.- 1.1 Substructure techniques in the dynamics of large flexible structures.- 1.2 Remarks on the mechanical impedance and on the dynamic stiffness of elastic systems.- 2. General considerations on the mechanical impedance and on the dynamic stiffness of plates.- 2.1 The classical plate theory.- 2.2 Plate impedances and the reduced multipoint impedance matrix.- 2.3 Singularities in Kirchhoff plates.- 2.4 Literature survey on plate vibrations.- 3. Dynamic stiffness of rectangular plates.- 3.1 Symmetric and antisymmetric vibrations.- 3.1.1 Double symmetric vibrations Wss.- 3.1.2 Symmetric-antisymmetric vibrations Wsa.- 3.1.3 Double antisymmetric vibrations Waa.- 3.2 The method of superposition.- 3.2.1 LEVY-type solutions.- 3.2.2 Determination of the beam functions.- 3.2.3 Superposition of building blocks.- 3.2.3.1 First approach: load developed along the x-axis.- 3.2.3.2 Second approach: load expanded in a double FOURIER series.- 3.3 Plate connected at center.- 3.3.1 Analytical solution.- 3.3.2 Numerical Tests.- 3.3.2.1 Comparison with known results for the free vibrations.- 3.3.2.2 Comparison with the rigid plate.- 3.3.2.3 Comparison with the beam.- 3.3.2.4 Irregularities of the distribution of zeroes and poles for the square plate connected at center.- 3.4 Plate connected at a point on a line of symmetry.- 3.4.1 Analytical solution.- 3.4.1.1 Double symmetric vibrations.- 3.4.1.2 Symmetric-antisymmetric vibrations.- 3.4.2 Numerical Tests.- 3.5 Plate connected at an arbitrary point.- 3.5.1 Analytical solution.- 3.5.1.1 Double symmetric vibrations.- 3.5.1.2 Symmetric-antisymmetric vibrations.- 3.5.1.3 Double antisymmetric vibrations.- 3.5.2 Numerical tests 121 3.5.2.1 Test for convergence.- 3.6 On the reduced multipoint stiffness and impedance matrices.- 3.7 Comparison with experiments.- 3.8 Conclusions.- 4. Final remarks.- 5. Literature.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List