Use of Vuv Radiation to Control Elastomer Seal Adhesion

Author:   National Aeronautics and Space Adm Nasa
Publisher:   Independently Published
ISBN:  

9781794401679


Pages:   28
Publication Date:   23 January 2019
Format:   Paperback
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Our Price $50.13 Quantity:  
Add to Cart

Share |

Use of Vuv Radiation to Control Elastomer Seal Adhesion


Add your own review!

Overview

Due to their wide operating temperatures and low leakage rates, silicone elastomers are the only class of flight qualified elastomer materials that currently meet NASA's needs for various seal applications, which include docking and hatch seals for future space exploration vehicles. However, silicone elastomers are naturally sticky and exhibit sizeable adhesion when mated against metals and other silicone surfaces. This undesirable adhesion can make undocking spacecraft or opening a hatch problematic. Two approaches that can be used to reduce seal adhesion include use of grease or, application of low doses of atomic oxygen (AO). This paper investigates a third approach: the application of light doses of vacuum ultraviolet (VUV) radiation. Presented are the adhesion and leakage characteristics of S0383-70 silicone elastomer exposed to various VUV doses in the 115 to 200 nm wavelength range. The data indicate that adhesion is expected to be less than the target threshold maximum of 2 lb/in(exp2) after about 1 J/cm(exp2) of VUV exposure for seal-to-metal configurations and after 2 J/cm(exp2) for seal-to-seal configurations with no significant damage, or increase in seal leakage. This paper shows that VUV, without AO or grease, can be an effective means to reduce adhesion to the desired levels necessary for space seals with minimal change in seal leak rates. deGroh, Henry C., III and Puleo, Bernadette J. and Waters, Deborah L. Glenn Research Center NASA/TM-2013-218067, AIAA Paper 2013-3915, E-18743

Full Product Details

Author:   National Aeronautics and Space Adm Nasa
Publisher:   Independently Published
Imprint:   Independently Published
Dimensions:   Width: 21.60cm , Height: 0.20cm , Length: 27.90cm
Weight:   0.091kg
ISBN:  

9781794401679


ISBN 10:   1794401679
Pages:   28
Publication Date:   23 January 2019
Audience:   General/trade ,  General
Format:   Paperback
Publisher's Status:   Active
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Table of Contents

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List