University Calculus: Early Transcendentals, Multivariable

Author:   Joel R. Hass ,  Maurice D. Weir ,  George B. Thomas, Jr. ,  Frank R. Giordano
Publisher:   Pearson Education (US)
Edition:   2nd edition
ISBN:  

9780321694607


Pages:   576
Publication Date:   26 August 2011
Replaced By:   9780321999603
Format:   Paperback
Availability:   In Print   Availability explained
Limited stock is available. It will be ordered for you and shipped pending supplier's limited stock.

Our Price $260.49 Quantity:  
Add to Cart

Share |

University Calculus: Early Transcendentals, Multivariable


Add your own review!

Overview

University Calculus, Early Transcendentals, Second Edition helps readers successfully generalize and apply the key ideas of calculus through clear and precise explanations, clean design, thoughtfully chosen examples, and superior exercise sets. This text offers the right mix of basic, conceptual, and challenging exercises, along with meaningful applications. This significant revision features more examples, more mid-level exercises, more figures, improved conceptual flow, and the best in technology for learning and teaching. This Multivariable volume consists of chapters 9—15 of the main text.

Full Product Details

Author:   Joel R. Hass ,  Maurice D. Weir ,  George B. Thomas, Jr. ,  Frank R. Giordano
Publisher:   Pearson Education (US)
Imprint:   Pearson
Edition:   2nd edition
Dimensions:   Width: 21.30cm , Height: 1.90cm , Length: 27.40cm
Weight:   1.060kg
ISBN:  

9780321694607


ISBN 10:   0321694600
Pages:   576
Publication Date:   26 August 2011
Audience:   College/higher education ,  Undergraduate
Replaced By:   9780321999603
Format:   Paperback
Publisher's Status:   Out of Print
Availability:   In Print   Availability explained
Limited stock is available. It will be ordered for you and shipped pending supplier's limited stock.

Table of Contents

9. Infinite Sequences and Series 9.1 Sequences 9.2 Infinite Series 9.3 The Integral Test 9.4 Comparison Tests 9.5 The Ratio and Root Tests 9.6 Alternating Series, Absolute and Conditional Convergence 9.7 Power Series 9.8 Taylor and Maclaurin Series 9.9 Convergence of Taylor Series 9.10 The Binomial Series and Applications of Taylor Series   10. Parametric Equations and Polar Coordinates 10.1 Parametrizations of Plane Curves 10.2 Calculus with Parametric Curves 10.3 Polar Coordinates 10.4 Graphing in Polar Coordinates 10.5 Areas and Lengths in Polar Coordinates 10.6 Conics in Polar Coordinates   11. Vectors and the Geometry of Space 11.1 Three-Dimensional Coordinate Systems 11.2 Vectors 11.3 The Dot Product 11.4 The Cross Product 11.5 Lines and Planes in Space 11.6 Cylinders and Quadric Surfaces   12. Vector-Valued Functions and Motion in Space 12.1 Curves in Space and Their Tangents 12.2 Integrals of Vector Functions; Projectile Motion 12.3 Arc Length in Space 12.4 Curvature and Normal Vectors of a Curve 12.5 Tangential and Normal Components of Acceleration 12.6 Velocity and Acceleration in Polar Coordinates   13. Partial Derivatives 13.1 Functions of Several Variables 13.2 Limits and Continuity in Higher Dimensions 13.3 Partial Derivatives 13.4 The Chain Rule 13.5 Directional Derivatives and Gradient Vectors 13.6 Tangent Planes and Differentials 13.7 Extreme Values and Saddle Points 13.8 Lagrange Multipliers   14. Multiple Integrals 14.1 Double and Iterated Integrals over Rectangles 14.2 Double Integrals over General Regions 14.3 Area by Double Integration 14.4 Double Integrals in Polar Form 14.5 Triple Integrals in Rectangular Coordinates 14.6 Moments and Centers of Mass 14.7 Triple Integrals in Cylindrical and Spherical Coordinates 14.8 Substitutions in Multiple Integrals   15. Integration in Vector Fields 15.1 Line Integrals 15.2 Vector Fields and Line Integrals: Work, Circulation, and Flux 15.3 Path Independence, Conservative Fields, and Potential Functions 15.4 Green's Theorem in the Plane 15.5 Surfaces and Area 15.6 Surface Integrals 15.7 Stokes' Theorem 15.8 The Divergence Theorem and a Unified Theory   16. First-Order Differential Equations (Online) 16.1 Solutions, Slope Fields, and Euler's Method 16.2 First-Order Linear Equations 16.3 Applications 16.4 Graphical Solutions of Autonomous Equations 16.5 Systems of Equations and Phase Planes   17. Second-Order Differential Equations (Online) 17.1 Second-Order Linear Equations 17.2 Nonhomogeneous Linear Equations 17.3 Applications 17.4 Euler Equations 17.5 Power Series Solutions

Reviews

Author Information

Joel Hass received his PhD from the University of California–Berkeley. He is currently a professor of mathematics at the University of California–Davis. He has coauthored six widely used calculus texts as well as two calculus study guides. He is currently on the editorial board of Geometriae Dedicata and Media-Enhanced Mathematics. He has been a member of the Institute for Advanced Study at Princeton University and of the Mathematical Sciences Research Institute, and he was a Sloan Research Fellow. Hass’s current areas of research include the geometry of proteins, three dimensional manifolds, applied math, and computational complexity. In his free time, Hass enjoys kayaking.   Maurice D. Weir holds a DA and MS from Carnegie-Mellon University and received his BS at Whitman College. He is a Professor Emeritus of the Department of Applied Mathematics at the Naval Postgraduate School in Monterey, California. Weir enjoys teaching Mathematical Modeling and Differential Equations. His current areas of research include modeling and simulation as well as mathematics education. Weir has been awarded the Outstanding Civilian Service Medal, the Superior Civilian Service Award, and the Schieffelin Award for Excellence in Teaching. He has coauthored eight books, including the University Calculus series and the twelfth edition of Thomas’ Calculus.   George B. Thomas, Jr. (late) of the Massachusetts Institute of Technology, was a professor of mathematics for thirty-eight years; he served as the executive officer of the department for ten years and as graduate registration officer for five years. Thomas held a spot on the board of governors of the Mathematical Association of America and on the executive committee of the mathematics division of the American Society for Engineering Education. His book, Calculus and Analytic Geometry, was first published in 1951 and has since gone through multiple revisions. The text is now in its twelfth edition and continues to guide students through their calculus courses. He also co-authored monographs on mathematics, including the text Probability and Statistics.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List