Understanding Machine Learning: From Theory to Algorithms

Author:   Shai Shalev-Shwartz (Hebrew University of Jerusalem) ,  Shai Ben-David (University of Waterloo, Ontario)
Publisher:   Cambridge University Press
ISBN:  

9781107057135


Pages:   410
Publication Date:   19 May 2014
Format:   Hardback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $137.14 Quantity:  
Add to Cart

Share |

Understanding Machine Learning: From Theory to Algorithms


Overview

Full Product Details

Author:   Shai Shalev-Shwartz (Hebrew University of Jerusalem) ,  Shai Ben-David (University of Waterloo, Ontario)
Publisher:   Cambridge University Press
Imprint:   Cambridge University Press
Dimensions:   Width: 18.30cm , Height: 2.80cm , Length: 26.00cm
Weight:   0.910kg
ISBN:  

9781107057135


ISBN 10:   1107057132
Pages:   410
Publication Date:   19 May 2014
Audience:   College/higher education ,  Tertiary & Higher Education
Format:   Hardback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1. Introduction; Part I. Foundations: 2. A gentle start; 3. A formal learning model; 4. Learning via uniform convergence; 5. The bias-complexity trade-off; 6. The VC-dimension; 7. Non-uniform learnability; 8. The runtime of learning; Part II. From Theory to Algorithms: 9. Linear predictors; 10. Boosting; 11. Model selection and validation; 12. Convex learning problems; 13. Regularization and stability; 14. Stochastic gradient descent; 15. Support vector machines; 16. Kernel methods; 17. Multiclass, ranking, and complex prediction problems; 18. Decision trees; 19. Nearest neighbor; 20. Neural networks; Part III. Additional Learning Models: 21. Online learning; 22. Clustering; 23. Dimensionality reduction; 24. Generative models; 25. Feature selection and generation; Part IV. Advanced Theory: 26. Rademacher complexities; 27. Covering numbers; 28. Proof of the fundamental theorem of learning theory; 29. Multiclass learnability; 30. Compression bounds; 31. PAC-Bayes; Appendix A. Technical lemmas; Appendix B. Measure concentration; Appendix C. Linear algebra.

Reviews

'This elegant book covers both rigorous theory and practical methods of machine learning. This makes it a rather unique resource, ideal for all those who want to understand how to find structure in data.' Bernhard Scholkopf, Max Planck Institute for Intelligent Systems 'This is a timely text on the mathematical foundations of machine learning, providing a treatment that is both deep and broad, not only rigorous but also with intuition and insight. It presents a wide range of classic, fundamental algorithmic and analysis techniques as well as cutting-edge research directions. This is a great book for anyone interested in the mathematical and computational underpinnings of this important and fascinating field.' Avrim Blum, Carnegie Mellon University


'This elegant book covers both rigorous theory and practical methods of machine learning. This makes it a rather unique resource, ideal for all those who want to understand how to find structure in data.' Bernhard Scholkopf, Max Planck Institute for Intelligent Systems 'This is a timely text on the mathematical foundations of machine learning, providing a treatment that is both deep and broad, not only rigorous but also with intuition and insight. It presents a wide range of classic, fundamental algorithmic and analysis techniques as well as cutting-edge research directions. This is a great book for anyone interested in the mathematical and computational underpinnings of this important and fascinating field.' Avrim Blum, Carnegie Mellon University 'This text gives a clear and broadly accessible view of the most important ideas in the area of full information decision problems. Written by two key contributors to the theoretical foundations in this area, it covers the range from theoretical foundations to algorithms, at a level appropriate for an advanced undergraduate course.' Peter L. Bartlett, University of California, Berkeley


Advance praise: 'This elegant book covers both rigorous theory and practical methods of machine learning. This makes it a rather unique resource, ideal for all those who want to understand how to find structure in data.' Bernhard Scholkopf, Max Planck Institute for Intelligent Systems Advance praise: 'This is a timely text on the mathematical foundations of machine learning, providing a treatment that is both deep and broad, not only rigorous but also with intuition and insight. It presents a wide range of classic, fundamental algorithmic and analysis techniques as well as cutting-edge research directions. This is a great book for anyone interested in the mathematical and computational underpinnings of this important and fascinating field.' Avrim Blum, Carnegie Mellon University


'This elegant book covers both rigorous theory and practical methods of machine learning. This makes it a rather unique resource, ideal for all those who want to understand how to find structure in data.' Bernhard Schoelkopf, Max Planck Institute for Intelligent Systems, Germany 'This is a timely text on the mathematical foundations of machine learning, providing a treatment that is both deep and broad, not only rigorous but also with intuition and insight. It presents a wide range of classic, fundamental algorithmic and analysis techniques as well as cutting-edge research directions. This is a great book for anyone interested in the mathematical and computational underpinnings of this important and fascinating field.' Avrim Blum, Carnegie Mellon University 'This text gives a clear and broadly accessible view of the most important ideas in the area of full information decision problems. Written by two key contributors to the theoretical foundations in this area, it covers the range from theoretical foundations to algorithms, at a level appropriate for an advanced undergraduate course.' Peter L. Bartlett, University of California, Berkeley


Author Information

Shai Shalev-Shwartz is an Associate Professor at the School of Computer Science and Engineering at the Hebrew University of Jerusalem, Israel. Shai Ben-David is a Professor in the School of Computer Science at the University of Waterloo, Canada.

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

ARG20253

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List