|
![]() |
|||
|
||||
OverviewThis book describes the use of machine learning techniques to build predictive models of uncertainty with application to hydrological models, focusing mainly on the development and testing of two different models. The first focuses on parameter uncertainty analysis by emulating the results of Monte Carlo simulation of hydrological models using efficient machine learning techniques. The second method aims at modelling uncertainty by building an ensemble of specialized machine learning models on the basis of past hydrological model‘s performance. The book then demonstrates the capacity of machine learning techniques for building accurate and efficient predictive models of uncertainty. Full Product DetailsAuthor: Durga Lal ShresthaPublisher: Taylor & Francis Ltd Imprint: CRC Press Weight: 0.453kg ISBN: 9781138424098ISBN 10: 1138424099 Pages: 222 Publication Date: 20 July 2017 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviewsAuthor InformationDurga Lal Shrestha is a researcher in the Hydroinformatics and Knowledge Management Department of the UNESCO-IHE Institute for Water Education, Netherlands. He received his Masters degree in hydroinformatics from the UNESCO-IHE Institute for Water Education in 2002. His research interests include hydrological modelling, uncertainty analysis, global and evolutionary optimisation, machine learning techniques and their applications in water based systems. Tab Content 6Author Website:Countries AvailableAll regions |