|
![]() |
|||
|
||||
OverviewThis thesis presents a simple, yet highly effective surface engineering solution that uses non-covalent binding peptides to control the autophagy-inducing activity of nanomaterials and nanodevices. The author presents RE-1, a short synthetic peptide that sequence-specifically binds to lanthanide (LN) oxide and upconversion nanocrystals with high affinity, which was discovered using an innovative phage display approach. RE-1 effectively inhibits the autophagy-inducing activity and toxicity of these nanocrystals by forming a stable coating layer on the surface of the nanoparticles, and by reducing their sedimentation and cell interaction. RE- 1 and its variants provide a versatile tool for tuning cell interactions in order to achieve the desired level of autophagic response and are useful for the various diagnostic and therapeutic applications of LN-based nanomaterials and nanodevices. Full Product DetailsAuthor: Yunjiao ZhangPublisher: Springer Verlag, Singapore Imprint: Springer Verlag, Singapore Edition: 1st ed. 2022 Weight: 0.273kg ISBN: 9789811681684ISBN 10: 9811681686 Pages: 156 Publication Date: 10 January 2023 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsIntroduction.- Phage display identifies a specific high-affinity binding peptide RE-1 for lanthanide (LN) nanomaterials.- RE-1 forms a stable coating layer on the surface of upconversion nanoparticles / nanocrystals (UCN).- Reduction of UCN sedimentation and nanomaterial–cell interaction by RE-1 coating.- RE-1 coating abrogates autophagy induction and toxicity for UCN in vitro and in vivo.- Enhancement of cell interaction and autophagy induction by coating with RE-1-RGD.-Conclusion and prospect.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |