Triangular Norms

Author:   Erich Peter Klement ,  R. Mesiar ,  E. Pap
Publisher:   Springer
Edition:   Softcover reprint of the original 1st ed. 2000
Volume:   8
ISBN:  

9789048155071


Pages:   387
Publication Date:   07 December 2010
Format:   Paperback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $789.36 Quantity:  
Add to Cart

Share |

Triangular Norms


Add your own review!

Overview

The history of triangular norms started with the paper ""Statistical metrics"" [Menger 1942]. The main idea of Karl Menger was to construct metric spaces where probability distributions rather than numbers are used in order to de­ scribe the distance between two elements of the space in question. Triangular norms (t-norms for short) naturally came into the picture in the course of the generalization of the classical triangle inequality to this more general set­ ting. The original set of axioms for t-norms was considerably weaker, including among others also the functions which are known today as triangular conorms. Consequently, the first field where t-norms played a major role was the theory of probabilistic metric spaces ( as statistical metric spaces were called after 1964). Berthold Schweizer and Abe Sklar in [Schweizer & Sklar 1958, 1960, 1961] provided the axioms oft-norms, as they are used today, and a redefinition of statistical metric spaces given in [Serstnev 1962]led to a rapid development of the field. Many results concerning t-norms were obtained in the course of this development, most of which are summarized in the monograph [Schweizer & Sklar 1983]. Mathematically speaking, the theory of (continuous) t-norms has two rather independent roots, namely, the field of (specific) functional equations and the theory of (special topological) semigroups.

Full Product Details

Author:   Erich Peter Klement ,  R. Mesiar ,  E. Pap
Publisher:   Springer
Imprint:   Springer
Edition:   Softcover reprint of the original 1st ed. 2000
Volume:   8
Dimensions:   Width: 15.50cm , Height: 2.10cm , Length: 23.50cm
Weight:   0.629kg
ISBN:  

9789048155071


ISBN 10:   904815507
Pages:   387
Publication Date:   07 December 2010
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

I.- 1. Basic definitions and properties.- 2. Algebraic aspects.- 3. Construction of t-norms.- 4. Families of t-norms.- 5. Representations of t-norms.- 6. Comparison of t-norms.- 7. Values and discretization of t-norms.- 8. Convergence of t-norms.- II.- 9. Distribution functions.- 10. Aggregation operators.- 11. Many-valued logics.- 12. Fuzzy set theory.- 13. Applications of fuzzy logic and fuzzy sets.- 14. Generalized measures and integrals.- A. Families of t-norms.- A.1 Aczél-Alsina t-norms.- A.2 Dombi t-norms.- A.3 Frank t-norms.- A.4 Hamacher t-norms.- A.5 Mayor-Torrens t-norms.- A.6 Schweizer-Sklar t-norms.- A.7 Sugeno-Weber t-norms.- A.8 Yager t-norms.- B. Additional t-norms.- B.1 Krause t-norm.- B.2 A family of incomparable t-norms.- Reference material.- List of Figures.- List of Tables.- List of Mathematical Symbols.

Reviews

The book is very well written and constitutes a valuable addition to the literature on t-norms and, in general fuzzy reasoning. It presents almost all of the most important developments of fuzzy sets and fuzzy logic by focusing on the central concept of triangular norm. It is divided into two parts and an appendix, which gives a summary of the existing families of t-norms. (Mathematical Reviews, 2002a)


The book is very well written and constitutes a valuable addition to the literature on t-norms and, in general fuzzy reasoning. It presents almost all of the most important developments of fuzzy sets and fuzzy logic by focusing on the central concept of triangular norm. It is divided into two parts and an appendix, which gives a summary of the existing families of t-norms. (Mathematical Reviews, 2002a)


Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List