|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: P.G. Ciarlet , M. RoseauPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 1984 ed. Volume: 195 Dimensions: Width: 17.00cm , Height: 2.30cm , Length: 24.40cm Weight: 0.748kg ISBN: 9783540129165ISBN 10: 3540129162 Pages: 422 Publication Date: 01 April 1984 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Out of stock ![]() The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Table of ContentsMinimizers and the edler-lagrange equations.- Geometrical methods in some bifurcation problems of elasticity.- Conservation laws without convexity.- Conservation laws and compensated compactness.- Homogeneisation materiaux composites.- Existence problems of the non-linear Boltzmann equation.- Numerical simulation for some applied problems originating from continuum mechanics.- Linear problems associated to the theory of elastic continua with finite deformations.- One-dimensional structured phase transitions on finite intervals.- Global existence and asymptotics in one-dimensional nonlinear viscoelasticity.- Discrete velocity models and the Boltzmann equation.- Formation of singularities in elastic waves.- Solitary waves under external forcing.- Sur Les Solutions De L'equation De Schroedinger Atomique Et Le Cas Particulier De Deux Electrons.- On homogenization problems.- Hamiltonian and non-Hamiltonian models for water waves.- On a class of live traction problems in elasticity.- Some viscous-dominated flows.- Initial value problems for viscoelastic liquids.- Perturbation of eigenvalues in thermoelasticity and vibration of systems with concentrated masses.- Stress tensors, Riemannian metrics and the alternative descriptions in elasticity.- Etude des oscilaltions dans les equations aux derivees partielles non lineaires.- Invariant manifolds and periodic solutions of three degrees of freedom Hamiltonian systems.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |