Treatise on Heavy Ion Science: Astrophysics, Chemistry, and Condensed Matter

Author:   D. A. Bromley ,  D. A. Bromley
Publisher:   Kluwer Academic Publishers Group
ISBN:  

9780306417863


Pages:   429
Publication Date:   30 June 1985
Format:   Hardback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $396.00 Quantity:  
Add to Cart

Share |

Treatise on Heavy Ion Science: Astrophysics, Chemistry, and Condensed Matter


Add your own review!

Overview

Full Product Details

Author:   D. A. Bromley ,  D. A. Bromley
Publisher:   Kluwer Academic Publishers Group
Imprint:   Kluwer Academic / Plenum Publishers
ISBN:  

9780306417863


ISBN 10:   0306417863
Pages:   429
Publication Date:   30 June 1985
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

1. Heavy-Ion Reactions in Nuclear Astrophysics.- 1. Introduction.- 2. Nuclear Astrophysics.- 2.1. The Primeval Big Bang.- 2.2. Some Mathematical Preliminaries.- 2.3. Stellar Burning Processes.- 2.4. Carbon, Neon, and Oxygen Burning.- 2.5. Silicon Burning and Supernovas.- 2.6. 12C + 12C, 12C + 16O, and 16O +16O in Explosive Oxygen Burning.- 3. Measurement Techniques for Sub-Coulomb-Barrier Heavy-Ion Reactions.- 3.1. The Residual Radioactivity Method.- 3.2. Detection of Fusion Residues.- 3.3. Detection of the Emitted Particles.- 3.4. Gamma-Ray Measurements.- 3.5. The Elastic Scattering Method.- 3.6. The Effects of Resonances.- 4. Experimental Data.- 4.1. The 12C + 12C Reactions.- 4.2. The 12C + 16O Reactions.- 4.3. The 16O + 16O Reactions.- 5. Reaction Model Calculations.- 5.1. The Shapes of S(E) Curves.- 5.2. Transfer Reactions.- 5.3. Optical Model Fits for Heavy-Ion Reactions.- 5.4. The Optical Model Fit of Michaud.- 5.5. The Equivalent Square-Well Optical Potential of Michaud and Fowler.- 5.6. A Simple Coulomb Barrier Penetration Model.- 5.7. The IWBC Model.- 5.8. Resonances in the Excitation Function.- 6. Concluding Remarks.- Note Added in Proof.- References.- 2. Heavy Ions in Hot Atom Chemistry.- 1. Introduction.- 2. Chemical Reactions Promoted by Accelerated Ions.- 2.1. Early Studies.- 2.2. Improved Bombardment Techniques.- 2.3. Results.- 3. Heavy Ions from the Spontaneous Decay of Radioactive Precursors.- 3.1. ? Decay of Isolated Tritiated Species.- 3.2. Applications to Structural and Kinetic Studies.- 3.3. Multicharged Ions from Nuclear Transitions Leading to Inner-Shell Ionization.- 4. Collision-Induced Coulomb Explosion of Fast Molecular Ions as a Structural Probe.- References.- 3. The Stopping and Range of Ions in Matter.- Abstract.- 1. Introduction.- 2. Stopping Power Tables.- 2.1. 1958: The Whaling Table.- 2.2. 1970: The Northcliffe-Schilling Table.- 2.3. 1972: The Bichsel Table.- 2.4. 1974: Ziegler and Chu Tables.- 2.5. 1977: Andersen and Ziegler: H Tables.- 2.6. 1978: Ziegler: He Tables.- 2.7. 1980: Ziegler Energetic Ion Tables.- 2.8. The Current Accuracy of Stopping Tables.- 3. Range Tables.- 3.1. 1970: Northcliffe and Schilling, Range and Stopping Power Tables .- 3.2. 1970: Johnson and Gibbons LSS Range Tables.- 3.3. 1975: Gibbons, Johnson, and Mylroie Range Tables.- 3.4. 1975: Brice and Winterbon Range Tables.- 3.5. 1981: Littmark and Ziegler, Energetic Ion Range Tables.- 4. Electronic Stopping of Ions.- 5. Interaction of a Particle with a Free Electron Gas.- 6. Nuclear Stopping of Ions.- 7. Range Theory.- References.- 4. Ion Implantation.- 1. Introduction.- 2. Dynamics.- 2.1. Energy Loss, Range, and Damage.- 2.2. Replacement Collisions.- 2.3. Collision Cascades.- 2.4. Sputtering.- 3. Metals.- 3.1. Dilute Alloys.- 3.2. Concentrated Alloys.- 4. Semiconductors (Si).- 4.1. Amorphous Silicon and Epitaxy.- 4.2. Supersaturation.- 5. Ion Beam Mixing.- References.- 5. Heavy-Ion Channeling.- 1. Introduction.- 2. Trajectories and Interaction Potentials.- 2.1. Planar Channeling.- 2.2. Hyperchanneling.- 3. Energy Loss in Channels.- 3.1. Screening Effects on Energy Loss.- 3.2. Higher-Order Corrections for Electronic Stopping of Heavy Ions.- 4. Charge Changing Collisions.- 4.1. Capture and Loss under Channeling Conditions.- 4.2. Radiative Electron Capture.- 4.3. Electron Capture and Loss to Continuum States (Convey Electron Production).- 5. Resonant Coherent Excitation.- References.- 6. The Electronic Polarization Induced in Solids Traversed by Fast Ions.- 1. Introduction.- 2. The Wake.- 2.1. Bohr's Model.- 2.2. The Electron-Gas Model.- 2.3. Fluctuations in the Wake.- 3. Experiments with Fast Molecular-Ion Beams.- 3.1. Stopping-Power Effects.- 3.2. High-Resolution Measurements of Fragment Momenta.- 3.3. Understanding the Ring Patterns.- Acknowledgments.- References.- 7. Erosion of Surfaces by Fast Heavy Ions.- 1. Introduction.- 2. Sputtering at Low Energies.- 3. Sputtering at High Energies.- 3.1. General Remarks.- 3.2. Possible Connections with Track Formation.- 3.3. Role of Target Strength.- 3.4. Role of Electrical Conductivity.- 3.5. Experiments with UF4 Targets.- 3.6. Thermal Model of High-Energy Sputtering.- 3.7. Alternative Mechanisms.- 3.8. Elaboration of the Zeroth-Order Thermal Model.- 4. Applications.- 5. Summary and Conclusions.- Acknowledgments.- References.- 8. Heavy-Ion Damage in Solids.- 1. Introduction.- 2. Low-Energy Irradiations (E < 5 keV).- 3. Medium-Energy Irradiations (5-200 keV).- 3.1. Models of Displacement Cascades.- 3.2. Direct Observation of Individual Displacement Cascades.- 3.3. Point Defect Clustering in Individual Cascades.- 3.4. Studies of Cascades in Nonmetals.- 3.5. High-Dose Irradiations.- 3.6. Radiation-Enhanced Diffusion and Solute Redistribution.- 4. High-Energy Irradiation (E > 200 keV).- 4.1. Study of the Primary Damage.- 4.2. Use of High-Energy Damage to Produce High Levels of Displacement Damage.- References.- 9. Analysis with Heavy Ions.- 1. Introduction.- 2. Nuclear Reaction Analysis of Hydrogen in Solids.- 2.1. Hydrogen Profiles of Lunar Material and the History of the Solar Wind.- 2.2. Hydrogen Surface Contaminations and the Containment of Ultracold Neutrons.- 2.3. Hydrogen in Thin Film High Technology Materials.- 3. Rutherford Backscattering Spectrometry.- 3.1. Principles and Applications of Rutherford Backscattering Spectrometry.- 3.2. Analysis of Ion Implanted Samples.- 3.3. Thin Film Analysis: Ion-Beam-Mixing Induced Silicide Formation.- 3.4. Analysis of Surfaces with Heavy-Ion Beams.- 4. Nuclear Recoil Analysis.- Acknowledgments.- References.- 10. Heavy-Ion-Induced Fusion Power.- 1. Introduction.- 1.1. Inertial Confinement Fusion.- 1.2. Driver Technologies.- 1.3. Power Production Requirements.- 2. Heavy-Ion Drivers.- 2.1. Basic Concepts.- 2.2. Reference Designs.- 2.3. Feasibility Constraints.- 2.4. Costs.- 3. Targets.- 3.1. Principles.- 3.2. Designs.- 4. Reactors.- 4.1. General Considerations.- 4.2. Examples.- 5. Prospects.- 5.1. Secrecy Problems.- 5.2. Development Programs.- 5.3. Overview.- Appendix A: Statement of USDOE on Declassification Actions Issued on September 4, 1980.- Appendix B: Excerpts from the Public Transcript of the May 3, 1979 Meeting of the USDOE Energy Research Advisory Board; Testimony of Dr. John Foster, Reporting on the Conclusions of the ICF Review he Chaired in 1979.- References.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List