|
![]() |
|||
|
||||
OverviewAperiodic tilings are interesting to mathematicians and scientists for both theoretical and practical reasons. The serious study of aperiodic tilings began as a solution to a problem in logic. Simpler aperiodic tilings eventually revealed hidden """"symmetries"""" that were previously considered impossible, while the tilings themselves were quite striking. The discovery of quasicrystals showed that such aperiodicity actually occurs in nature and led to advances in materials science. Many properties of aperiodic tilings can be discerned by studying one tiling at a time. However, by studying families of tilings, further properties are revealed.This broader study naturally leads to the topology of tiling spaces. This book is an introduction to the topology of tiling spaces, with a target audience of graduate students who wish to learn about the interface of topology with aperiodic order. It isn't a comprehensive and cross-referenced tome about everything having to do with tilings, which would be too big, too hard to read, and far too hard to write! Rather, it is a review of the explosion of recent work on tiling spaces as inverse limits, on the cohomology of tiling spaces, on substitution tilings and the role of rotations, and on tilings that do not have finite local complexity. Powerful computational techniques have been developed, as have new ways of thinking about tiling spaces. The text contains a generous supply of examples and exercises. Full Product DetailsAuthor: Lorenzo Adlai SadunPublisher: American Mathematical Society Imprint: American Mathematical Society Edition: New ed. Volume: v. 46 Weight: 0.250kg ISBN: 9780821847275ISBN 10: 0821847279 Pages: 118 Publication Date: 24 February 2009 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Paperback Publisher's Status: Unknown Availability: Awaiting stock ![]() Table of ContentsBasic notions Tiling spaces and inverse limits Cohomology of tilings spaces Relaxing the rules I: Rotations Pattern-equivariant cohomology Tricks of the trade Relaxing the rules II: Tilings without finite local complexity Solutions to selected exercises Bibliography.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |