|
![]() |
|||
|
||||
OverviewThis book aims to provide undergraduates with an understanding of geometric topology. Topics covered include a sampling from point-set, geometric, and algebraic topology. The presentation is pragmatic, avoiding the famous pedagogical method ""whereby one begins with the general and proceeds to the particular only after the student is too confused to understand it."" Exercises are an integral part of the text. Students taking the course should have some knowledge of linear algebra. An appendix provides a brief survey of the necessary background of group theory. Full Product DetailsAuthor: L.Christine KinseyPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: 1st ed. 1993. Corr. 2nd printing 1997 Dimensions: Width: 15.50cm , Height: 1.70cm , Length: 23.50cm Weight: 1.310kg ISBN: 9780387941028ISBN 10: 0387941029 Pages: 281 Publication Date: 08 October 1993 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Out of print, replaced by POD ![]() We will order this item for you from a manufatured on demand supplier. Table of Contents1. Introduction to topology.- 1.1. An overview.- 2. Point-set topology in ?n.- 2.1. Open and closed sets in ?n.- 2.2. Relative neighborhoods.- 2.3. Continuity.- 2.4. Compact sets.- 2.5. Connected sets.- 2.6. Applications.- 3. Point-set topology.- 3.1. Open sets and neighborhoods.- 3.2. Continuity, connectedness, and compactness.- 3.3. Separation axioms.- 3.4. Product spaces.- 3.5. Quotient spaces.- 4. Surfaces.- 4.1. Examples of complexes.- 4.2. Cell complexes.- 4.3. Surfaces.- 4.4. Triangulations.- 4.5. Classification of surfaces.- 4.6. Surfaces with boundary.- 5. The euler characteristic.- 5.1. Topological invariants.- 5.2. Graphs and trees.- 5.3. The euler characteristic and the sphere.- 5.4. The euler characteristic and surfaces.- 5.5. Map-coloring problems.- 5.6. Graphs revisited.- 6. Homology.- 6.1. The algebra of chains.- 6.2. Simplicial complexes.- 6.3. Homology.- 6.4. More computations.- 6.5. Betti numbers and the euler characteristic.- 7. Cellular functions.- 7.1. Cellular functions.- 7.2. Homology and cellular functions.- 7.3. Examples.- 7.4. Covering spaces.- 8. Invariance of homology.- 8.1. Invariance of homology for surfaces.- 8.2. The Simplicial Approximation Theorem.- 9. Homotopy.- 9.1. Homotopy and homology.- 9.2. The fundamental group.- 10. Miscellany.- 10.1. Applications.- 10.2. The Jordan Curve Theorem.- 10.3. 3-manifolds.- 11. Topology and calculus.- 11.1. Vector fields and differential equations in ?n.- 11.2. Differentiable manifolds.- 11.3. Vector fields on manifolds.- 11.4. Integration on manifolds.- Appendix: Groups.- References.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |