Topology of Singular Spaces and Constructible Sheaves

Author:   Jörg Schürmann
Publisher:   Springer Basel
Edition:   Softcover reprint of the original 1st ed. 2003
Volume:   63
ISBN:  

9783034894241


Pages:   454
Publication Date:   30 October 2012
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $290.37 Quantity:  
Add to Cart

Share |

Topology of Singular Spaces and Constructible Sheaves


Overview

Assuming that the reader is familiar with sheaf theory, the book gives a self-contained introduction to the theory of constructible sheaves related to many kinds of singular spaces, such as cell complexes, triangulated spaces, semialgebraic and subanalytic sets, complex algebraic or analytic sets, stratified spaces, and quotient spaces. The relation to the underlying geometrical ideas are worked out in detail, together with many applications to the topology of such spaces. All chapters have their own detailed introduction, containing the main results and definitions, illustrated in simple terms by a number of examples. The technical details of the proof are postponed to later sections, since these are not needed for the applications.

Full Product Details

Author:   Jörg Schürmann
Publisher:   Springer Basel
Imprint:   Springer Basel
Edition:   Softcover reprint of the original 1st ed. 2003
Volume:   63
Dimensions:   Width: 15.50cm , Height: 2.30cm , Length: 23.50cm
Weight:   0.712kg
ISBN:  

9783034894241


ISBN 10:   3034894244
Pages:   454
Publication Date:   30 October 2012
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1 Thom-Sebastiani Theorem for constructible sheaves.- 1.1 Milnor fibration.- 1.2 Thom-Sebastiani Theorem.- 1.3 The Thom-Sebastiani Isomorphism in the derived category.- 1.4 Appendix: Künneth formula.- 2 Constructible sheaves in geometric categories.- 2.1 Geometric categories.- 2.2 Constructible sheaves.- 2.3 Constructible functions.- 3 Localization results for equivariant constructible sheaves.- 3.1 Equivariant sheaves.- 3.2 Localization results for additive functions.- 3.3 Localization results for Grothendieck groups and trace formulae.- 3.4 Equivariant cohomology.- 4 Stratification theory and constructible sheaves.- 4.1 Stratification theory.- 4.2 Constructible sheaves on stratified spaces.- 4.3 Base change properties.- 5 Morse theory for constructible sheaves.- 5.1 Stratified Morse theory, part I.- 5.2 Characteristic cycles and index formulae.- 5.3 Stratified Morse theory, part II.- 5.4 Vanishing cycles.- 6 Vanishing theorems for constructible sheaves.- Introduction: Results and examples.- 6.1 Proof of the results.

Reviews

Author Information

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List