|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: K. Janich , S. LevyPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: 1st ed. 1984. 2nd Corr. printing 1994 Dimensions: Width: 15.50cm , Height: 1.20cm , Length: 23.50cm Weight: 0.483kg ISBN: 9780387908922ISBN 10: 0387908927 Pages: 193 Publication Date: 30 January 1984 Audience: College/higher education , Professional and scholarly , Tertiary & Higher Education , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contents§1. What is point-set topology about?.- §2. Origin and beginnings.- I Fundamental Concepts.- §1. The concept of a topological space.- §2. Metric spaces.- §3. Subspaces, disjoint unions and products.- §4. Bases and subbases.- §5. Continuous maps.- §6. Connectedness.- §7. The Hausdorff separation axiom.- §8. Compactness.- II Topological Vector Spaces.- §1. The notion of a topological vector space.- §2. Finite-dimensional vector spaces.- §3. Hilbert spaces.- §4. Banach spaces.- §5. Fréchet spaces.- §6. Locally convex topological vector spaces.- §7. A couple of examples.- III The Quotient Topology.- §1. The notion of a quotient space.- §2. Quotients and maps.- §3. Properties of quotient spaces.- §4. Examples: Homogeneous spaces.- §5. Examples: Orbit spaces.- §6. Examples: Collapsing a subspace to a point.- §7. Examples: Gluing topological spaces together.- IV Completion of Metric Spaces.- §1. The completion of a metric space.- §2. Completion of a map.- §3. Completion of normed spaces.- V Homotopy.- §1. Homotopic maps.- §2. Homotopy equivalence.- §3. Examples.- §4. Categories.- §5. Functors.- §6. What is algebraic topology?.- §7. Homotopy—what for?.- VI The Two Countability Axioms.- §1. First and second countability axioms.- §2. Infinite products.- §3. The role of the countability axioms.- VII CW-Complexes.- §1. Simplicial complexes.- §2. Cell decompositions.- §3. The notion of a CW-complex.- §4. Subcomplexes.- §5. Cell attaching.- §6. Why CW-complexes are more flexible.- §7. Yes, but… ?.- VIII Construction of Continuous Functions on Topological Spaces.- §1. The Urysohn lemma.- §2. The proof of the Urysohn lemma.- §3. The Tietze extension lemma.- §4. Partitions of unity and vector bundle sections.- §5. Paracompactness.- IX Covering Spaces.- §1. Topological spaces over X.- §2. The concept of a covering space.- §3. Path lifting.- §4. Introduction to the classification of covering spaces.- §5. Fundamental group and lifting behavior.- §6. The classification of covering spaces.- §7. Covering transformations and universal cover.- §8. The role of covering spaces in mathematics.- X The Theorem of Tychonoff.- §1. An unlikely theorem?.- §2. What is it good for?.- §3. The proof.- Last Chapter Set Theory (by Theodor Bröcker).- References.- Table of Symbols.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |