|
![]() |
|||
|
||||
OverviewThis book provides a thorough review of a class of powerful algorithms for the numerical analysis of complex time series data which were obtained from dynamical systems. These algorithms are based on the concept of state space representations of the underlying dynamics, as introduced by nonlinear dynamics. In particular, current algorithms for state space reconstruction, correlation dimension estimation, testing for determinism and surrogate data testing are presented algorithms which have been playing a central role in the investigation of deterministic chaos and related phenomena since 1980. Special emphasis is given to the much-disputed issue whether these algorithms can be successfully employed for the analysis of the human electroencephalogram.Contents: Dynamical Systems, Time Series and AttractorsLinear MethodsState Space Reconstruction: Theoretical FoundationsState Space Reconstruction: Practical ApplicationDimensions: Basic DefinitionsLyapunov Exponents and EntropiesNumerical Estimation of the Correlation DimensionSources of Error and Data Set Size RequirementsMonte Carlo Analysis of Dimension EstimationSurrogate Data TestsDimension Analysis of the Human EEGTesting for Determinism in Time SeriesReadership: Graduates and scientists in physics, applied mathematics, neurology, theoretical biology, economics, meteorology and neuroinformatics. Full Product DetailsAuthor: Andreas GalkaPublisher: World Scientific Publishing Company Imprint: World Scientific Publishing Company ISBN: 9781299614932ISBN 10: 1299614930 Pages: 360 Publication Date: 01 January 2000 Audience: General/trade , General Format: Electronic book text Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |