Theta Invariants of Euclidean Lattices and Infinite-Dimensional Hermitian Vector Bundles over Arithmetic Curves

Author:   Jean-Benoît Bost
Publisher:   Springer Nature Switzerland AG
Edition:   2020 ed.
Volume:   334
ISBN:  

9783030443313


Pages:   365
Publication Date:   22 August 2021
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $284.60 Quantity:  
Add to Cart

Share |

Theta Invariants of Euclidean Lattices and Infinite-Dimensional Hermitian Vector Bundles over Arithmetic Curves


Overview

This book presents the most up-to-date and sophisticated account of the theory of Euclidean lattices and sequences of Euclidean lattices, in the framework of Arakelov geometry, where Euclidean lattices are considered as vector bundles over arithmetic curves. It contains a complete description of the theta invariants which give rise to a closer parallel with the geometric case. The author then unfolds his theory of infinite Hermitian vector bundles over arithmetic curves and their theta invariants, which provides a conceptual framework to deal with the sequences of lattices occurring in many diophantine constructions. The book contains many interesting original insights and ties to other theories. It is written with extreme care, with a clear and pleasant style, and never sacrifices accessibility to sophistication. 

Full Product Details

Author:   Jean-Benoît Bost
Publisher:   Springer Nature Switzerland AG
Imprint:   Springer Nature Switzerland AG
Edition:   2020 ed.
Volume:   334
Weight:   0.623kg
ISBN:  

9783030443313


ISBN 10:   3030443310
Pages:   365
Publication Date:   22 August 2021
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Reviews

“The Preface and the Introduction give an extremely well-done overview of the contents of the book, meant for a wide scope of readers. … What results is a carefully written very readable text.” (Rolf Berndt, Mathematical Reviews, April, 2022) “The monograph presents its interesting subject in a highly insightful, lucid, and accessible fashion; it will therefore be relevant to anyone with an interest in Arakelov geometry. While its results are technical, they are motivated, described and proved as clearly as can be.” (Jeroen Sijsling, zbMATH 1471.11002, 2021)


The monograph presents its interesting subject in a highly insightful, lucid, and accessible fashion; it will therefore be relevant to anyone with an interest in Arakelov geometry. While its results are technical, they are motivated, described and proved as clearly as can be. (Jeroen Sijsling, zbMATH 1471.11002, 2021)


Author Information

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List