|
|
|||
|
||||
OverviewSimilarity Solutions for the Boundary Layer Flow and Heat Transfer of Viscous Fluids, Nanofluids, Porous Media, and Micropolar Fluids presents new similarity solutions for fluid mechanics problems, including heat transfer of viscous fluids, boundary layer flow, flow in porous media, and nanofluids due to continuous moving surfaces. After discussing several examples of these problems, similarity solutions are derived and solved using the latest proven methods, including bvp4c from MATLAB, the Keller-box method, singularity methods, and more. Numerical solutions and asymptotic results for limiting cases are also discussed in detail to investigate how flow develops at the leading edge and its end behavior. Detailed discussions of mathematical models for boundary layer flow and heat transfer of micro-polar fluid and hybrid nanofluid will help readers from a range of disciplinary backgrounds in their research. Relevant background theory will also be provided, thus helping readers solidify their computational work with a better understanding of physical phenomena. Full Product DetailsAuthor: John H. Merkin (Professor, Department of Applied Mathematics, University of Leeds, UK) , Ioan Pop (Faculty of Mathematics and Computer Science, Babes-Bolyai University, Romania) , Yian Yian Lok (Associate Professor, Mathematics Section, School of Distance Education, Universiti Sains Malaysia, Malaysia) , Teodor Grosan (Associate Professor, Department of Mathematics of Babes-Bolyai University, Romania)Publisher: Elsevier Science Publishing Co Inc Imprint: Academic Press Inc Weight: 0.450kg ISBN: 9780128211885ISBN 10: 0128211881 Pages: 294 Publication Date: 14 September 2021 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsAuthor InformationJohn Merkin is a Professor at the Department of Applied Mathematics of the University of Leeds, UK. His research career started more than 50 years ago, and he has published over 280 documents to date, mainly in the field of fluid mechanics. His current research interests include boundary layer flow, stagnation-point flow, and heat transfer. Ioan Pop is a Professor of Applied Mathematics at the Faculty of Mathematics and Computer Science at Babes-Bolyai University, Romania. He has more than 50 years’ experience of research in fields including fluid mechanics and heat transfer with application to boundary layer theory, heat transfer in Newtonian and non-Newtonian fluids, magnetohydrodynamics, and convective flow in fluid-saturated porous media. In his career he has co-supervised more than 20 phd students, written 10 books, and co-authored over 850 research journal papers. He is the Director of the Centre for Excellence in Mechanics of the Romanian National Research Council, and serves on the editorial boards of 14 international scholarly journals, and has served on the organizing committee of over 27 conferences. Yian Yian Lok is an Associate Professor in the Mathematics Section of the School of Distance Education at the Universiti Sains Malaysia, Malaysia. Her research interests include boundary layer flows, Non-Newtonian fluids, convection flows, and stagnation-point flows. In 2006 her research was awarded the ‘Highly Commended Award’ by the Emerald Literati Network. Teodor Grosan is an Associate Professor at the Department of Mathematics of Babeş-Bolyai University in Romania. His research interests include theoretical mechanics, fluid mechanics, porous environments, and heat transfer. Tab Content 6Author Website:Countries AvailableAll regions |
||||