|
![]() |
|||
|
||||
OverviewThe theory of singularities lies at the crossroads between those branches of mathematics which are the most abstract and those which are the most applied. Algebraic and differential geometry and topology, commutative algebra and group theory are as intimately connected to singularity theory as are dynamical systems theory, control theory, differential equations, quantum mechanical and quasi-classical asymptotics, optics, and functional analysis. This collection of papers incorporates recent results of participants in the editor's ongoing seminar in singularity theory, held in the Mechanics and Mathematics Department of Moscow University for over twenty years. With its broad range of subject matter, this volume will appeal to a wide range of readers in various areas of the mathematical sciences.Among the topics covered are: construction of new knot invariants, stable cohomology of complementary spaces to diffusion diagrams, topological properties of spaces of Legendre maps, application of Weierstrass bifurcation points in projective curve flattenings, classification of singularities of projective surfaces with boundary, nonsmoothness of visible contours of smooth convex hypersurfaces, flag manifolds, hyperbolic partial differential systems, and control theory. Full Product DetailsAuthor: V. I. ArnoldPublisher: American Mathematical Society Imprint: American Mathematical Society Edition: New edition Volume: No. 1 Weight: 0.624kg ISBN: 9780821841006ISBN 10: 0821841009 Pages: 333 Publication Date: 01 July 1990 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Temporarily unavailable ![]() The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |