|
![]() |
|||
|
||||
OverviewThis book presents the theory of periodic conjugate heat transfer in a detailed way. The effects of thermophysical properties and geometry of a solid body on the commonly used and experimentally determined heat transfer coefficient are analytically presented from a general point of view. The main objective of the book is a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation for the solid body. At the body surface, the true heat transfer coefficient is composed of two parts: the true mean value resulting from the solution of the steady state heat transfer problem and a periodically variable part, the periodic time and length to describe the oscillatory hydrodynamic effects. The second edition is extended by (i) the analysis of stability boundaries in helium flow at supercritical conditions in a heated channel with respect to the interaction between a solid body and a fluid; (ii) a periodic model and a method of heat transfer simulation in a fluid at supercritical pressure and (iii) a periodic quantum-mechanical model for homogeneous vapor nucleation in a fluid with respect to nanoscale effects. Full Product DetailsAuthor: Yuri B. ZudinPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 2nd ed. 2012 Volume: 5 Dimensions: Width: 15.50cm , Height: 1.50cm , Length: 23.50cm Weight: 0.541kg ISBN: 9783642214202ISBN 10: 3642214207 Pages: 228 Publication Date: 15 September 2011 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Awaiting stock ![]() The supplier is currently out of stock of this item. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out for you. Table of ContentsIntroduction.- Construction of a general solution of the problem.- Solution of characteristic problems.- Universal algorithm of computation of the factor of conjugation.- Solution of special problems.- Step and non-periodic oscillations of the heat transfer intensity.- Practical applications of the theory.- Wall’s thermal effect on hydrodynamic flow stability.- Periodical model of turbulence heat transfer.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |