|
![]() |
|||
|
||||
OverviewDieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben. Full Product DetailsAuthor: W. Barth , Heinrich Behnke , R. Remmert , O. ForsterPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 2. Aufl. 1970. Softcover reprint of the original 2nd ed. 1970 Volume: 51 Dimensions: Width: 15.50cm , Height: 1.30cm , Length: 23.50cm Weight: 0.385kg ISBN: 9783642620058ISBN 10: 3642620051 Pages: 228 Publication Date: 20 October 2011 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Language: German Table of ContentsÜber den Begriff des analytischen Funktionselementes.- I. Bereiche über dem erweiterten Raume.- § 1. Der erweiterte Raum.- § 2. Bereiche.- § 3. Rand- und Verzweigungspunkte.- § 4. Funktionen und Bereiche.- § 5. Analytische Abbildungen.- II. Geometrische Grundlagen.- § 1. m-dimensionale Mannigfaltigkeiten.- § 2. Analytische (charakteristische) Flächen.- §3. Hyperflächen.- § 4. Spezielle Bereiche über dem R4.- Anhang zu Kap. I und II. H. Holmann: Konstruktion und Theorie der komplexen Räume.- III. Darstellung regulärer Funktionen durch elementare Reihen.- § 1. Der Bereich der absoluten Konvergenz von Potenzreihen.- § 2. Potenzreihen und das Integral von Cauchy.- §3. Der invariante Konvergenzkörper.- § 4. Die Entwicklungen nach je einer Veränderlichen.- § 5- Über superharmonische Funktionen.- Anhang zu Kap. III. K. Spallek: Funktionalanalytische Fortsetzungsmethoden.- IV. Singuläre Mannigfaltigkeiten.- § 1. Der Kontinuitätssatz und seine unmittelbaren Folgerungen.- §2. (2n?2)-dimensionale singuläre Mannigfaltigkeiten.- §3. Natürliche Grenzen.- Anhang zu Kap. IV. H. Kerner: Das Levische Problem.- V. Die Verteilung der Nullstellen und außerwesentlichen Singularitäten.- § 1. Der Vorbereitungssatz.- § 2. Null- und Polstellenflachen.- § 3. Meromorphe Funktionen im erweiterten Raume.- § 4. Funktionen zu vorgegebenen Pol- und Nullstellenflächen.- Anhang zu Kap. V. G. Scheja: Cartansche Verheftungstheorie.- VI. Theorie der Regularitätsbereiche und Regularitätshüllen.- § 1. Der Hauptsatz über die gleichzeitige Fortsetzbarkeit.- § 2. Eigenschaften der Regularitätsbereiche und Regularitätshüllen.- § 3. Konvergenz- und Normalitätsbereiche.- § 4. Der Rungesche Satz und nichtschlichte Regularitatshüllen schlichter Bereiche.- § 5.Konvergenzprobleme der Regularitätshüllen.- Anhang zu Kap. VI. O. Forster: Holomorphiegebiete.- VII. Abbildungstheorie.- § 1. Eindeutigkeitssätze.- § 2. Folgen von Abbildungen.- § 3. Innere Abbildungen.- § 4. Maximalteiler.- § 5. Der Cartansche Abbildungssatz.- § 6. Die mittelpunktstreuen Abbildungen der eigentlichen kreissymmetrischen Bereiche.- § 7. Die nichtmittelpunktstreuen Abbildungen kreissymmetrischer Bereiche.- § 8. Die Metrik von Carathéodory.- § 9. Verschiedene Fragen zur Abbildungstheorie.- §10. Die Bergmannsche Abbildungstheorie.- Anhang zu Kap. VII. W. Kaup: Abbildungstheorie.- Literatur zu [BT].- Literatur zu den Anhängen.- Zusammenstellung wichtiger Begriffe zu [BT].- Stichwortverzeichnis für die Anhänge.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |