|
![]() |
|||
|
||||
OverviewThis thesis describes in-depth theoretical efforts to understand the reaction mechanism of graphite and lithium metal as anodes for next-generation rechargeable batteries. The first part deals with Na intercalation chemistry in graphite, whose understanding is crucial for utilizing graphite as an anode for Na-ion batteries. The author demonstrates that Na ion intercalation in graphite is thermodynamically unstable because of the unfavorable Na-graphene interaction. To address this issue, the inclusion of screening moieties, such as solvents, is suggested and proven to enable reversible Na-solvent cointercalation in graphite. Furthermore, the author provides the correlation between the intercalation behavior and the properties of solvents, suggesting a general strategy to tailor the electrochemical intercalation chemistry. The second part addresses the Li dendrite growth issue, which is preventing practical application of Li metal anodes. A continuum mechanics study considering various experimental conditions reveals the origins of irregular growth of Li metal. The findings provide crucial clues for developing effective counter strategies to control the Li metal growth, which will advance the application of high-energy-density Li metal anodes. Full Product DetailsAuthor: Gabin YoonPublisher: Springer Verlag, Singapore Imprint: Springer Verlag, Singapore Edition: 1st ed. 2022 Weight: 0.142kg ISBN: 9789811389160ISBN 10: 9811389160 Pages: 65 Publication Date: 06 January 2024 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsAuthor InformationDr. Gabin Yoon received a B.Sc. degree (2013) and Ph.D. degree (2019) in materials science and engineering from Seoul National University. His research interest lies in the theoretical study of electrode materials for Li and Na rechargeable batteries using density functional theory and continuum mechanics. Tab Content 6Author Website:Countries AvailableAll regions |