The Tower of Hanoi – Myths and Maths

Author:   Andreas M. Hinz ,  Sandi Klavžar ,  Uroš Milutinović ,  Ciril Petr
Publisher:   Birkhauser Verlag AG
Edition:   2013 ed.
ISBN:  

9783034807692


Pages:   335
Publication Date:   01 July 2015
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $129.35 Quantity:  
Add to Cart

Share |

The Tower of Hanoi – Myths and Maths


Add your own review!

Overview

Full Product Details

Author:   Andreas M. Hinz ,  Sandi Klavžar ,  Uroš Milutinović ,  Ciril Petr
Publisher:   Birkhauser Verlag AG
Imprint:   Birkhauser Verlag AG
Edition:   2013 ed.
Dimensions:   Width: 15.50cm , Height: 1.90cm , Length: 23.50cm
Weight:   5.329kg
ISBN:  

9783034807692


ISBN 10:   3034807694
Pages:   335
Publication Date:   01 July 2015
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Reviews

From the reviews: This book takes the reader on an enjoyable adventure into the Tower of Hanoi puzzle (TH) and various related puzzles and objects. ... The style of presentation is entertaining, at times humorous, and very thorough. The exercises ending each chapter are an essential part of the explication providing some definitions ... and some proofs of the theorems or statements in the main text. ... As such, the book will be an enjoyable read for any recreational mathematician ... . (Andrew Percy, zbMATH, Vol. 1285, 2014) This research monograph focuses on a large family of problems connected to the classic puzzle of the Tower of Hanoi. ... The authors explain all the combinatorial concepts they use, so the book is completely accessible to an advanced undergraduate student. ... Summing Up: Recommended. Comprehensive mathematics collections, upper-division undergraduates through researchers/faculty. (M. Bona, Choice, Vol. 51 (3), November, 2013) The Tower of Hanoi is an example of a problem that is easy to state and understand, yet a thorough mathematical analysis of the problem and its extensions is lengthy enough to make a book. ... there is enough implied mathematics in the action to make it interesting to professional mathematicians. ... It was surprising to learn that the 'simple' problem of the Tower of Hanoi ... could be the subject of a full semester special topics course in advanced mathematics. (Charles Ashbacher, MAA Reviews, May, 2013) Gives an introduction to the problem and the history of the TH puzzle and other related puzzles, but it also introduces definitions and properties of graphs that are used in solving these problems. ... Thus if you love puzzles, and more in particular the mathematics behind it, this is a book for you. ... Also if you are looking for a lifelasting occupation, then you may find here a list of open problems that will keep you busy for a while. (A. Bultheel, The European Mathematical Society, February, 2013)


“The Tower of Hanoi isn’t just a recreational problem, it is also a substantial area worthy of study, and this book does this area full justice. … I haven’t enjoyed reading a ‘popular mathematics’ book as much for quite some time, and I don’t hesitate to recommend this book to students, professional research mathematicians, teachers, and to readers of popular mathematics who enjoy more technical expository detail.” (Chris Sangwin, The Mathematical Intelligencer, Vol. 37, 2015) “This book takes the reader on an enjoyable adventure into the Tower of Hanoi puzzle (TH) and various related puzzles and objects. … The style of presentation is entertaining, at times humorous, and very thorough. The exercises ending each chapter are an essential part of the explication providing some definitions … and some proofs of the theorems or statements in the main text. … As such, the book will be an enjoyable read for any recreational mathematician … .” (Andrew Percy, zbMATH, Vol. 1285, 2014) “This research monograph focuses on a large family of problems connected to the classic puzzle of the Tower of Hanoi. … The authors explain all the combinatorial concepts they use, so the book is completely accessible to an advanced undergraduate student. … Summing Up: Recommended. Comprehensive mathematics collections, upper-division undergraduates through researchers/faculty.” (M. Bona, Choice, Vol. 51 (3), November, 2013) “The Tower of Hanoi is an example of a problem that is easy to state and understand, yet a thorough mathematical analysis of the problem and its extensions is lengthy enough to make a book. … there is enough implied mathematics in the action to make it interesting to professional mathematicians. … It was surprising to learn that the ‘simple’ problem of the Tower of Hanoi … could be the subject of a full semester special topics course in advanced mathematics.” (Charles Ashbacher, MAA Reviews, May, 2013) “Gives an introduction to the problem and the history of the TH puzzle and other related puzzles, but it also introduces definitions and properties of graphs that are used in solving these problems. … Thus if you love puzzles, and more in particular the mathematics behind it, this is a book for you. … Also if you are looking for a lifelasting occupation, then you may find here a list of open problems that will keep you busy for a while.” (A. Bultheel, The European Mathematical Society, February, 2013)


The Tower of Hanoi isn't just a recreational problem, it is also a substantial area worthy of study, and this book does this area full justice. ... I haven't enjoyed reading a 'popular mathematics' book as much for quite some time, and I don't hesitate to recommend this book to students, professional research mathematicians, teachers, and to readers of popular mathematics who enjoy more technical expository detail. (Chris Sangwin, The Mathematical Intelligencer, Vol. 37, 2015) This book takes the reader on an enjoyable adventure into the Tower of Hanoi puzzle (TH) and various related puzzles and objects. ... The style of presentation is entertaining, at times humorous, and very thorough. The exercises ending each chapter are an essential part of the explication providing some definitions ... and some proofs of the theorems or statements in the main text. ... As such, the book will be an enjoyable read for any recreational mathematician ... . (Andrew Percy, zbMATH, Vol. 1285, 2014) This research monograph focuses on a large family of problems connected to the classic puzzle of the Tower of Hanoi. ... The authors explain all the combinatorial concepts they use, so the book is completely accessible to an advanced undergraduate student. ... Summing Up: Recommended. Comprehensive mathematics collections, upper-division undergraduates through researchers/faculty. (M. Bona, Choice, Vol. 51 (3), November, 2013) The Tower of Hanoi is an example of a problem that is easy to state and understand, yet a thorough mathematical analysis of the problem and its extensions is lengthy enough to make a book. ... there is enough implied mathematics in the action to make it interesting to professional mathematicians. ... It was surprising to learn that the 'simple' problem of the Tower of Hanoi ... could be the subject of a full semester special topics course in advanced mathematics. (Charles Ashbacher, MAA Reviews, May, 2013) Gives an introduction to the problem and the history of the TH puzzle and other related puzzles, but it also introduces definitions and properties of graphs that are used in solving these problems. ... Thus if you love puzzles, and more in particular the mathematics behind it, this is a book for you. ... Also if you are looking for a lifelasting occupation, then you may find here a list of open problems that will keep you busy for a while. (A. Bultheel, The European Mathematical Society, February, 2013)


Author Information

Andreas M. Hinz is Professor at the Department of  Mathematics, University of Munich (LMU), Germany. He has worked at the University of Geneva (Switzerland), King's College London (England), the Technical University of Munich (Germany), and the Open University in Hagen (Germany). His main fields of research are real analysis, the history of science, mathematical modeling, and discrete mathematics. Sandi Klavžar is Professor at the Faculty of Mathematics and Physics, University of Ljubljana, Slovenia, and at the Department of Mathematics and Computer Science, University of Maribor, Slovenia. He is an author of three books on graph theory and an editorial board member of numerous journals including Discrete Applied Mathematics, European Journal of Combinatorics, and MATCH Communications in Mathematical and in Computer Chemistry. Uroš Milutinović is Professor at the Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia. His mainfields of research are topology and discrete mathematics. Ciril Petr is a researcher at the Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List