|
![]() |
|||
|
||||
OverviewThis monograph studies a series of mathematical models of the evolution of a population under mutation and selection. Its starting point is the quasispecies equation, a general non-linear equation which describes the mutation-selection equilibrium in Manfred Eigen’s famous quasispecies model. A detailed analysis of this equation is given under the assumptions of finite genotype space, sharp peak landscape, and class-dependent fitness landscapes. Different probabilistic representation formulae are derived for its solution, involving classical combinatorial quantities like Stirling and Euler numbers. It is shown how quasispecies and error threshold phenomena emerge in finite population models, and full mathematical proofs are provided in the case of the Wright–Fisher model. Along the way, exact formulas are obtained for the quasispecies distribution in the long chain regime, on the sharp peak landscape and on class-dependent fitness landscapes. Finally, several other classical population models are analyzed, with a focus on their dynamical behavior and their links to the quasispecies equation. This book will be of interest to mathematicians and theoretical ecologists/biologists working with finite population models. Full Product DetailsAuthor: Raphaël Cerf , Joseba DalmauPublisher: Springer International Publishing AG Imprint: Springer International Publishing AG Edition: 1st ed. 2022 Volume: 102 Weight: 0.391kg ISBN: 9783031086656ISBN 10: 3031086651 Pages: 242 Publication Date: 01 August 2023 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsReviews“The text is written in an easy-to-read style and is suitable for use in various courses, including probability theory, Markov chains, mathematical ecology and population dynamics. The book can be expected to provide several ideas for further investigation of finite population models.” (Attila Dénes, zbMATH 1507.92072, 2023) Author InformationTab Content 6Author Website:Countries AvailableAll regions |