|
![]() |
|||
|
||||
OverviewMany data-intensive applications that use machine learning or artificial intelligence techniques depend on humans providing the initial dataset, enabling algorithms to process the rest or for other humans to evaluate the performance of such algorithms. Not only can labeled data for training and evaluation be collected faster, cheaper, and easier than ever before, but we now see the emergence of hybrid human-machine software that combines computations performed by humans and machines in conjunction. There are, however, real-world practical issues with the adoption of human computation and crowdsourcing. Building systems and data processing pipelines that require crowd computing remains difficult. In this book, we present practical considerations for designing and implementing tasks that require the use of humans and machines in combination with the goal of producing high-quality labels. Full Product DetailsAuthor: Omar AlonsoPublisher: Springer International Publishing AG Imprint: Springer International Publishing AG Weight: 0.300kg ISBN: 9783031011900ISBN 10: 3031011902 Pages: 129 Publication Date: 28 May 2019 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Language: English Table of ContentsReviewsAuthor InformationOmar Alonso is a Principal Data Scientist Lead at Microsoft in Silicon Valley where he works on the intersection of social media, information retrieval, knowledge graphs, and human computation. He holds a Ph.D. from the University of California at Davis and an undergraduate degree from UNICEN, Argentina. Tab Content 6Author Website:Countries AvailableAll regions |