|
![]() |
|||
|
||||
OverviewNonlinear differential or difference equations are encountered not only in mathematics, but also in many areas of physics (evolution equations, propagation of a signal in an optical fiber), chemistry (reaction-diffusion systems), and biology (competition of species). This book introduces the reader to methods allowing one to build explicit solutions to these equations. A prerequisite task is to investigate whether the chances of success are high or low, and this can be achieved without any a priori knowledge of the solutions, with a powerful algorithm presented in detail called the Painlevé test. If the equation under study passes the Painlevé test, the equation is presumed integrable. If on the contrary the test fails, the system is nonintegrable or even chaotic, but it may still be possible to find solutions. The examples chosen to illustrate these methods are mostly taken from physics. These include on the integrable side the nonlinear Schrödinger equation (continuous and discrete), the Korteweg-de Vries equation, the Hénon-Heiles Hamiltonians, on the nonintegrable side the complex Ginzburg-Landau equation (encountered in optical fibers, turbulence, etc), the Kuramoto-Sivashinsky equation (phase turbulence), the Kolmogorov-Petrovski-Piskunov equation (KPP, a reaction-diffusion model), the Lorenz model of atmospheric circulation and the Bianchi IX cosmological model. Written at a graduate level, the book contains tutorial text as well as detailed examples and the state of the art on some current research. Full Product DetailsAuthor: Robert M. Conte , Micheline MusettePublisher: Springer Imprint: Springer Edition: 2008 ed. Dimensions: Width: 15.50cm , Height: 1.50cm , Length: 23.50cm Weight: 0.454kg ISBN: 9789400796270ISBN 10: 9400796277 Pages: 256 Publication Date: 16 September 2014 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsFrom the contents 1. Introduction. 2. Singularity structure in the complex plane, the Painlevé test. 3. Integrating ordinary differential equations. 4. Painlevé property and Painlevé test for partial differential equations. 5. From the test to explicit solutions of PDEs. 6. Quartic Hénon-Heiles Hamiltonian. 7. Discrete nonlinear equations. 8. FAQ (Frequently asked questions). A. The classical results of Painlevé and followers. B. Brief presentation of the elliptic functions. C. Basic introduction to the Nevanlinna theory. D. More on the Painlevé transcendents. E. The bilinear operator of Hirota. F. Algorithm for computing the Laurent series.ReviewsFrom the reviews: The new monograph of the leading experts in the singularity analysis of differential equations provides a profound introduction to the Painleve property and related topics on the boundary between integrable and nonintegrable differential and difference models. The Painleve handbook gives a new insight and is really useful for anyone interesting in the theory of integrable systems. (Andrei A. Kapaev, Zentrablatt MATH, Vol. 1153, 2009) The main aim of Painleve and his coworkers was to discover new special functions defined by the differential equations they found. Overall, the book is very well written. It is clear that the authors mean for the book to be accessible, and they have succeeded. Conte and Musette have written an excellent introduction to some of the methods Painleve and his collaborators used and, more importantly, to how those methods are still relevant today. I highly recommend their handbook. (Bernard Deconinck, SIAM Review, Vol. 51 (3), 2009) This is an excellent monograph and survey on methods of integration of a large number of nonlinear ODEs . One may say that this book is an important completion of some recent monographs on the Painleve topic . The extensive reference list consists of approximately 450 items. the authors succeed in giving a readable treatment of various methods such as the singularity confinement, the polynomial growth, etc. (Ilpo Laine, Mathematical Reviews, Issue 2009 i) From the reviews: The new monograph of the leading experts in the singularity analysis of differential equations provides a profound introduction to the Painleve property and related topics on the boundary between integrable and nonintegrable differential and difference models. ... `The Painleve handbook' gives a new insight and is really useful for anyone interesting in the theory of integrable systems. (Andrei A. Kapaev, Zentrablatt MATH, Vol. 1153, 2009) The main aim of Painleve and his coworkers was to discover new special functions defined by the differential equations they found. ... Overall, the book is very well written. It is clear that the authors mean for the book to be accessible, and they have succeeded. ... Conte and Musette have written an excellent introduction to some of the methods Painleve and his collaborators used and, more importantly, to how those methods are still relevant today. I highly recommend their handbook. (Bernard Deconinck, SIAM Review, Vol. 51 (3), 2009) This is an excellent monograph and survey on methods of integration of a large number of nonlinear ODEs ... . One may say that this book is an important completion of some recent monographs on the Painleve topic ... . The extensive reference list consists of approximately 450 items. ... the authors succeed in giving a readable treatment of various methods such as the singularity confinement, the polynomial growth, etc. (Ilpo Laine, Mathematical Reviews, Issue 2009 i) From the reviews: The new monograph of the leading experts in the singularity analysis of differential equations provides a profound introduction to the Painleve property and related topics on the boundary between integrable and nonintegrable differential and difference models. ... 'The Painleve handbook' gives a new insight and is really useful for anyone interesting in the theory of integrable systems. (Andrei A. Kapaev, Zentrablatt MATH, Vol. 1153, 2009) The main aim of Painleve and his coworkers was to discover new special functions defined by the differential equations they found. ... Overall, the book is very well written. It is clear that the authors mean for the book to be accessible, and they have succeeded. ... Conte and Musette have written an excellent introduction to some of the methods Painleve and his collaborators used and, more importantly, to how those methods are still relevant today. I highly recommend their handbook. (Bernard Deconinck, SIAM Review, Vol. 51 (3), 2009) This is an excellent monograph and survey on methods of integration of a large number of nonlinear ODEs ... . One may say that this book is an important completion of some recent monographs on the Painleve topic ... . The extensive reference list consists of approximately 450 items. ... the authors succeed in giving a readable treatment of various methods such as the singularity confinement, the polynomial growth, etc. (Ilpo Laine, Mathematical Reviews, Issue 2009 i) Author InformationConte and Musette are recognized authorities in the area of Painlevé equations and the Painlevé property. Tab Content 6Author Website:Countries AvailableAll regions |