|
![]() |
|||
|
||||
OverviewThe primary objective of this monograph is to develop an elementary and se- containedapproachtothemathematicaltheoryofaviscousincompressible?uid n in a domain ? of the Euclidean spaceR , described by the equations of Navier- Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers’ convenience, in the ?rst two chapters we collect, without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain ?. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n=2,3 that are also most signi?cant from the physical point of view. For mathematical generality, we will develop the l- earized theory for all n? 2. Although the functional-analytic approach developed here is, in principle, known to specialists, its systematic treatment is not available, and even the diverseaspectsavailablearespreadoutintheliterature.However,theliterature is very wide, and I did not even try to include a full list of related papers, also because this could be confusing for the student. In this regard, I would like to apologize for not quoting all the works that, directly or indirectly, have inspired this monograph. Full Product DetailsAuthor: Hermann SohrPublisher: Birkhauser Verlag AG Imprint: Birkhauser Verlag AG Edition: Reprint of the 1st edition 2001 by Birkhauser Verlag, Switzerland Dimensions: Width: 15.50cm , Height: 1.90cm , Length: 23.50cm Weight: 0.581kg ISBN: 9783034805506ISBN 10: 3034805500 Pages: 367 Publication Date: 14 December 2012 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsFrom the reviews: The book is well written and not unnecessarily wordy. There is an up-to-date bibliography and a nice index. ... a mathematician who wishes to know what the important issues concerning eq. (1) are and what has been achieved, would find this an excellent source. Equally, a mathematically-minded student, with a good grounding in analysis and who has decided to work in this area, or the teacher who wants to teach a course on this material would find this a valuable text. (P. N. Shankar,Current Science, Vol. 85 (2), July, 2003) Author InformationHermann Sohr is professor of mathematics, especially mathematical fluid mechanics, at the University Paderborn, Germany. Tab Content 6Author Website:Countries AvailableAll regions |