The Mathematical Foundation of Structural Mechanics

Author:   F. Hartmann
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   Softcover reprint of the original 1st ed. 1985
ISBN:  

9783642824036


Pages:   371
Publication Date:   15 December 2011
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $237.57 Quantity:  
Add to Cart

Share |

The Mathematical Foundation of Structural Mechanics


Add your own review!

Overview

This book attempts to acquaint engineers who have mastered the essentials of structural mechanics with the mathematical foundation of their science, of structural mechanics of continua. The prerequisites are modest. A good working knowledge of calculus is sufficient. The intent is to develop a consistent and logical framework of theory which will provide a general understanding of how mathematics forms the basis of structural mechanics. Emphasis is placed on a systematic, unifying and rigorous treatment. Acknowledgements The author feels indebted to the engineers Prof. D. Gross, Prof. G. Mehlhorn and Prof. H. G. Schafer (TH Darmstadt) whose financial support allowed him to follow his inclinations and to study mathematics, to Prof. E. Klingbeil and Prof. W. Wendland (TH Darmstadt) for their unceasing effort to achieve the impossible, to teach an engineer mathematics, to the staff of the Department of Civil Engineering at the University of California, Irvine, for their generous hospitality in the academic year 1980-1981, to Prof. R. Szilard (Univ. of Dortmund) for the liberty he granted the author in his daily chores, to Mrs. Thompson (Univ. of Dortmund) and Prof. L. Kollar (Budapest/Univ. of Dortmund) for their help in the preparation of the final draft, to my young colleagues, Dipl.-Ing. S. Pickhardt, Dipl.-Ing. D. Ziesing and Dipl.-Ing. R. Zotemantel for many fruitful discussions, and to cando ing. P. Schopp and Frau Middeldorf for their help in the production of the manuscript. Dortmund, January 1985 Friedel Hartmann Contents Notations ........................................................... XII Introduction ........................................................ .

Full Product Details

Author:   F. Hartmann
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   Softcover reprint of the original 1st ed. 1985
Dimensions:   Width: 17.00cm , Height: 2.00cm , Length: 24.40cm
Weight:   0.668kg
ISBN:  

9783642824036


ISBN 10:   364282403
Pages:   371
Publication Date:   15 December 2011
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1 Fundamentals.- 1.1 Vectors and Matrices.- 1.2 Differentiation.- 1.3 Domains.- 1.4 Integrals.- 1.5 Integration by Parts.- 1.6 Gateaux Differentials.- 1.7 Functionals.- 1.8 Sobolev Spaces.- 1.9 The Differential Equations.- 2 Work and Energy.- 2.1 Integral Identities.- 2.2 Summary.- 2.3 Three Corollaries.- 2.4 A Beam.- 2.5 Eigenwork = Internal Energy.- 2.6 Equilibrium.- 2.7 Summation of Work and Energy.- 2.8 Rigid Supports and free Boundaries.- 2.9 Elastic Supports.- 2.10 The Mathematical Basis of Structural Mechanics.- 2.11 The Space $${C^{2m}}(\bar \Omega)$$ and its Limitations.- 3 Continuous Beams, Trusses and Frames.- 3.1 Continuous Beams.- 3.2 Trusses.- 3.3 Frames.- 3.4 Stiffness Matrices.- 4 Energy Principles.- 4.1 The Basic Principle.- 4.2 Examples.- 4.3 The Principle of Minimum Potential Energy.- 4.4 The Complementary Principle.- 4.5 The Formulation of ?1 (u) and ?2 (u).- 4.6 The Sign of the Total Energy.- 4.7 The Point ? (w) and the Classes R1 and R2.- 4.8 Displacement Method and Force Method.- 4.9 Energy Principles for Cont. Beams, Trusses and Frames.- 4.10 The Formulation of the Functional “by hand”.- 4.11 Lagrange Multipliers.- 4.12 The Algebra of Structural Mechanics.- 5 Concentrated Forces.- 5.1 Fundamental Solutions.- 5.2 Fundamental Solutions and Integral Identities.- 5.3 Results.- 5.4 Summary.- 5.5 An Extension.- 5.6 Theorems “eigenwork = int. energy”.- 5.7 The Characteristic Functions.- 5.8 An Alternative.- 5.9 Castigliano’s Theorem.- 5.10 Castigliano’s Generalized Theorem.- 5.11 Concentrated Forces or Disturbances on the Boundary.- 6 Influence Functions.- 6.1 Integral Representations.- 6.2 Green’s function.- 6.3 Compatibility on the Boundary.- 6.4 Summary.- 6.5 An Example.- 6.6 Stiffness Matrices and Compatibility Conditions.- 6.7 TheBoundary Element Method.- 6.8 The Trace Theorem.- 6.9 Elastic Potentials.- 7 The Operators A.- 7.1 The Systems.- 7.2 Identities.- 7.3 Energy Principles.- 7.4 Sufficient Conditions.- 7.5 Other Mixed Formulations.- 7.6 The Babuška-Brezzi Condition.- 8 Shells.- 8.1 Shells as Surfaces.- 8.2 Statics.- 8.3 Koiter’s Model.- 8.4 The first Identity.- 9 Second-Order Analysis.- 9.1 Beams.- 9.2 Stability.- 9.3 Lateral Buckling of Beams.- 9.4 The Kirchhoff Plate.- 9.5 Nonconservative Problems.- 9.6 Initial Value Problems.- 9.7 Vibrations.- 9.8 Hamilton’s Principle.- 10 Nonlinear Theory of Elasticity.- 10.1 The Differential Equations.- 10.2 The first Identity.- 10.3 Energy Principles.- 10.4 Incremental Procedures.- 10.5 Large Displacement Analysis of Beams.- 10.6 Large Displacement Analysis of Plates.- 10.7 The Principle “eigenwork = int. energy”.- 10.8 Influence Functions.- 11 Finite Elements.- 11.1 Shape Functions.- 11.2 The Error in Finite Elements.- 11.3 Nonconforming Shape Functions.- 11.4 The Patch Test.- 11.5 Hybrid Energy Principles.- 11.6 Hybrid Energy Principles for Operators A.- 12 References.- 13 Subject Index.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List