|
![]() |
|||
|
||||
OverviewHere is a comprehensive introduction to the least-squares finite element method (LSFEM) for numerical solution of PDEs. It covers the theory for first-order systems, particularly the div-curl and the div-curl-grad system. Then LSFEM is applied systematically to permissible boundary conditions for the incompressible Navier-Stokes equations, to show that the divergence equations in the Maxwell equations are not redundant, and to derive equivalent second-order versions of the Navier-Stokes equations and the Maxwell equations. LSFEM is simple, efficient and robust, and can solve a wide range of problems in fluid dynamics and electromagnetics, including incompressible viscous flows, rotational inviscid flows, low-Mach-number compressible flows, two-fluid and convective flows, scattering waves, etc. Full Product DetailsAuthor: Bo-nan JiangPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: Softcover reprint of hardcover 1st ed. 1998 Dimensions: Width: 15.50cm , Height: 2.20cm , Length: 23.50cm Weight: 0.664kg ISBN: 9783642083679ISBN 10: 3642083676 Pages: 418 Publication Date: 15 December 2010 Audience: Professional and scholarly , Professional and scholarly , Professional & Vocational , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Out of print, replaced by POD ![]() We will order this item for you from a manufatured on demand supplier. Table of ContentsI. Basic Concepts of LSFEM.- 1. Introduction.- 2. First-Order Scalar Equation in One Dimension.- 3. First-Order System in One Dimension.- II. Fundamentals of LSFEM.- 4. Basis of LSFEM.- 5. Div—Curl System.- 6. Div—Curl—Grad System.- III. LSFEM in Fluid Dynamics.- 7. Inviscid Irrotational Flows.- 8. Incompressible Viscous Flows.- 9. Convective Transport.- 10. Incompressible Inviscid Rotational Flows.- 11. Low-Speed Compressible Viscous Flows.- 12. Two-Fluid Flows.- 13. High-Speed Compressible Flows.- IV. LSFEM in Electromagnetics.- 14. Electromagnetics.- V. Solution of Discrete Equations.- 15. The Element-by-Element Conjugate Gradient Method.- Appendices.- A. Operations on Vectors.- B. Green’s Formula.- C. Poincaré Inequality.- D. Lax—Milgram Theorem.- References.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |