The Heritage of Thales

Author:   W. S. Anglin ,  J. Lambek
Publisher:   Springer-Verlag New York Inc.
Edition:   1st ed. 1995. Corr. 2nd printing 1998
ISBN:  

9780387945446


Pages:   331
Publication Date:   22 August 1995
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $237.47 Quantity:  
Add to Cart

Share |

The Heritage of Thales


Add your own review!

Overview

Full Product Details

Author:   W. S. Anglin ,  J. Lambek
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   1st ed. 1995. Corr. 2nd printing 1998
Dimensions:   Width: 15.50cm , Height: 2.00cm , Length: 23.50cm
Weight:   1.470kg
ISBN:  

9780387945446


ISBN 10:   038794544
Pages:   331
Publication Date:   22 August 1995
Audience:   College/higher education ,  Undergraduate
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

0 Introduction.- 0 Introduction.- I: History and Philosophy of Mathematics.- 1 Egyptian Mathematics.- 2 Scales of Notation.- 3 Prime Numbers.- 4 Sumerian-Babylonian Mathematics.- 5 More about Mesopotamian Mathematics.- 6 The Dawn of Greek Mathematics.- 7 Pythagoras and His School.- 8 Perfect Numbers.- 9 Regular Polyhedra.- 10 The Crisis of Incommensurables.- 11 From Heraclitus to Democritus.- 12 Mathematics in Athens.- 13 Plato and Aristotle on Mathematics.- 14 Constructions with Ruler and Compass.- 15 The Impossibility of Solving the Classical Problems.- 16 Euclid.- 17 Non-Euclidean Geometry and Hilbert’s Axioms.- 18 Alexandria from 300 BC to 200 BC.- 19 Archimedes.- 20 Alexandria from 200 BC to 500 AD.- 21 Mathematics in China and India.- 22 Mathematics in Islamic Countries.- 23 New Beginnings in Europe.- 24 Mathematics in the Renaissance.- 25 The Cubic and Quartic Equations.- 26 Renaissance Mathematics Continued.- 27 The Seventeenth Century in France.- 28 The Seventeenth Century Continued.- 29 Leibniz.- 30 The Eighteenth Century.- 31 The Law of Quadratic Reciprocity.- II: Foundations of Mathematics.- 1 The Number System.- 2 Natural Numbers (Peano’s Approach).- 3 The Integers.- 4 The Rationals.- 5 The Real Numbers.- 6 Complex Numbers.- 7 The Fundamental Theorem of Algebra.- 8 Quaternions.- 9 Quaternions Applied to Number Theory.- 10 Quaternions Applied to Physics.- 11 Quaternions in Quantum Mechanics.- 12 Cardinal Numbers.- 13 Cardinal Arithmetic.- 14 Continued Fractions.- 15 The Fundamental Theorem of Arithmetic.- 16 Linear Diophantine Equations.- 17 Quadratic Surds.- 18 Pythagorean Triangles and Fermat’s Last Theorem.- 19 What Is a Calculation?.- 20 Recursive and Recursively Enumerable Sets.- 21 Hilbert’s Tenth Problem.- 22 Lambda Calculus.- 23 Logic fromAristotle to Russell.- 24 Intuitionistic Propositional Calculus.- 25 How to Interpret Intuitionistic Logic.- 26 Intuitionistic Predicate Calculus.- 27 Intuitionistic Type Theory.- 28 Gödel’s Theorems.- 29 Proof of Gödel’s Incompleteness Theorem.- 30 More about Gödel’s Theorems.- 31 Concrete Categories.- 32 Graphs and Categories.- 33 Functors.- 34 Natural Transformations.- 35 A Natural Transformation between Vector Spaces.- References.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List