|
|
|||
|
||||
OverviewUnlock the Power of Machine Learning-No Experience Needed! Are you curious about machine learning, but feel overwhelmed by jargon, complicated code, or fear that it's only for ""experts""? The Gradient Boosting Guidebook is your friendly, step-by-step companion, crafted especially for beginners who want to confidently build real-world models using Python's most powerful tools-XGBoost, LightGBM, and Scikit-Learn. Imagine moving from confusion to clarity as you master gradient boosting, one of today's most important and in-demand techniques for data science and AI. Whether you dream of winning a Kaggle competition, landing a data science job, or simply understanding how modern predictions work, this book meets you exactly where you are-no prior programming or math background required. Inside, you'll discover: Crystal-Clear Explanations: Complex concepts like ensemble learning and model tuning are broken down into simple, friendly language anyone can understand. Hands-On Projects: Build practical machine learning solutions step by step, from data preparation and feature engineering to model deployment-perfect for portfolio-building or classroom use. Beginner-Friendly Python Tutorials: Get started fast, with easy instructions for installing and using the core Python ML libraries, even if you've never coded before. Real-World Applications: Work through guided projects that mirror real business and analytics challenges-like credit risk analysis, price prediction, and more. Troubleshooting and Cheat Sheets: Find quick help for common errors and reference guides to speed up your learning, reduce frustration, and celebrate every breakthrough. Supportive Tone: You'll find encouragement at every turn, with stories, tips, and ""personal insight"" that normalize mistakes and show you that learning is about growth, not perfection. Key Takeaways: Learn how to use gradient boosting to solve real problems with confidence Gain practical experience with XGBoost, LightGBM, and Scikit-Learn Master data cleaning, feature engineering, and hyperparameter tuning Build models that you can explain, deploy, and trust Embrace mistakes as part of the journey and celebrate each small win This isn't just a technical manual-it's your launchpad into the world of data science. If you've ever thought ""I'm not technical enough,"" this guide is here to prove you wrong and show you just how capable you are. Every chapter builds your skills and confidence, guiding you from your very first model to deploying machine learning solutions you'll be proud of. Ready to turn uncertainty into expertise and make your mark in data science? Start your journey with The Gradient Boosting Guidebook and discover how approachable, practical, and empowering machine learning can be! Full Product DetailsAuthor: Haider KoelePublisher: Independently Published Imprint: Independently Published Dimensions: Width: 17.80cm , Height: 1.20cm , Length: 25.40cm Weight: 0.413kg ISBN: 9798273895645Pages: 234 Publication Date: 10 November 2025 Audience: General/trade , General Format: Paperback Publisher's Status: Active Availability: Available To Order We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |
||||