|
![]() |
|||
|
||||
OverviewThis text presents an overview of higher-order Hamilton geometry with applications to higher-order Hamiltonian mechanics. It is a direct continuation of the book ""The Geometry of Hamilton and Lagrange Spaces"". It contains the general theory of high er order Hamilton spaces H(k)n, k>=1, semisprays, the canonical nonlinear connection, the N-linear metrical connection and their structure equations, and the Riemannian almost contact metrical model of these spaces. In addition, the volume also describes new developments such as variational principles for higher order Hamiltonians; Hamilton-Jacobi equations; higher order energies and law of conservation; Noether symmetries; Hamilton subspaces of order k and their fundamental equations. The duality, via Legendre transformation, between Hamilton spaces of order k and Lagrange spaces of the same order is pointed out. Also, the geometry of Cartan spaces of order k =1 is investigated in detail. This theory is useful in the construction of geometrical models in theoretical physics, mechanics, dynamical systems, optimal control, biology, economy etc. Audience: Mathematicians, geometers, physicists and engineers. The volume can be recommended as a supplementary graduate text. Full Product DetailsAuthor: R. MironPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: 2003 ed. Volume: 132 Dimensions: Width: 15.50cm , Height: 1.50cm , Length: 23.50cm Weight: 0.553kg ISBN: 9781402015748ISBN 10: 1402015747 Pages: 247 Publication Date: 31 October 2003 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Awaiting stock ![]() The supplier is currently out of stock of this item. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out for you. Table of Contents1 Geometry of the k-Tangent Bundle TkM.- 1.1 The Category of k-Accelerations Bundles.- 1.2 Liouville Vector Fields. k-Semisprays.- 1.3 Nonlinear Connections.- 1.4 The Dual Coefficients of a Nonlinear Connection.- 1.5 The Determination of a Nonlinear Connection.- 1.6 d-Tensor Fields. N-Linear Connections.- 1.7 Torsion and Curvature.- 2 Lagrange Spaces of Higher Order.- 2.1 Lagrangians of Order k.- 2.2 Variational Problem.- 2.3 Higher Order Energies.- 2.4 Jacobi-Ostrogradski Momenta.- 2.5 Higher Order Lagrange Spaces.- 2.6 Canonical Metrical N-Connections.- 2.7 Generalized Lagrange Spaces of Order k.- 3 Finsler Spaces of Order k.- 3.1 Spaces F(k)n.- 3.2 Cartan Nonlinear Connection in F(k)n.- 3.3 The Cartan Metrical N-Linear Connection.- 4 The Geometry of the Dual of k-Tangent Bundle.- 4.1 The Dual Bundle (T*k M, ?*k, M).- 4.2 Vertical Distributions. Liouville Vector Fields.- 4.3 The Structures J and J*.- 4.4 Canonical Poisson Structures on T*kM.- 4.5 Homogeneity.- 5 The Variational Problem for the Hamiltonians of Order k.- 5.1 The Hamilton-Jacobi Equations.- 5.2 Zermelo Conditions.- 5.3 Higher Order Energies. Conservation of Energy ?k ?1(H).- 5.4 The Jacobi-Ostrogradski Momenta.- 5.5 Nöther Type Theorems.- 6 Dual Semispray. Nonlinear Connections.- 6.1 Dual Semispray.- 6.2 Nonlinear Connections.- 6.3 The Dual Coefficients of the Nonlinear Connection N.- 6.4 The Determination of the Nonlinear Connection by a Dual k-Semispray.- 6.5 Lie Brackets. Exterior Differential.- 6.6 The Almost Product Structure ?. The Almost Contact Structure $$ \mathbb{F} $$.- 6.7 The Riemannian Structure G on T*kM.- 6.8 The Riemannian Almost Contact Structure $$(\mathop \mathbb{G}\limits^ \vee ,\mathop \mathbb{F}\limits^ \vee )$$.- 7 Linear Connections on the Manifold T*kM.- 7.1 The Algebraof Distinguished Tensor Fields.- 7.2 N-Linear Connections.- 7.3 The Torsion and Curvature of an N-Linear Connection.- 7.4 The Coefficients of a N-Linear Connection.- 7.5 The h-,??- and ?k-Covariant Derivatives in Local Adapted Basis.- 7.6 Ricci Identities. Local Expressions of d-Tensor of Curvature and Torsion. Bianchi Identities.- 7.7 Parallelism of the Vector Fields on the Manifold T*kM.- 7.8 Structure Equations of a N-Linear Connection.- 8 Hamilton Spaces of Order k ? 1.- 8.1 The Spaces H(k)n.- 8.2 The k-Tangent Structure J and the Adjoint k-Tangent Structure J*.- 8.3 The Canonical Poisson Structure of the Hamilton Space H(k)n.- 8.4 Legendre Mapping Determined by a Lagrange Space L(k)n= (M, L).- 8.5 Legendre Mapping Determined by a Hamilton Space of Order k.- 8.6 The Canonical Nonlinear Connection of the Space H(k)n.- 8.7 Canonical Metrical N-Linear Connection of the Space H(k)n.- 8.8 The Hamilton Space H(k)n of Electrodynamics.- 8.9 The Riemannian Almost Contact Structure Determined by the Hamilton Space H(k)n.- 9 Subspaces in Hamilton Spaces of Order k.- 9.1 Submanifolds $${T^{*k}}\mathop M\limits^ \vee$$ in the Manifold T*kM.- 9.2 Hamilton Subspaces $${{\mathop H\limits^ \vee} ^{(k)m}}$$ in H(k)n. Darboux Frames.- 9.3 Induced Nonlinear Connection.- 9.4 The Relative Covariant Derivative.- 9.5 The Gauss-Weingarten Formula.- 9.6 The Gauss-Codazzi Equations.- 10 The Cartan Spaces of Order k as Dual of Finsler Spaces of Order k.- 10.1 C(k)n-Spaces.- 10.2 Geometrical Properties of the Cartan Spaces of Order k.- 10.3 Canonical Presymplectic Structures, Variational Problem of the Space C(kn).- 10.4 The Cartan Spaces C(k)n as Dual of Finsler Spaces F(k)n.- 10.5 Canonical Nonlinear Connection. N-Linear Connections.- 10.6 Parallelism of Vector Fields in Cartan SpaceC(kn).- 10.7 Structure Equations of Metrical Canonical N-Connection.- 10.8 Riemannian Almost Contact Structure of the Space C(kn).- 11 Generalized Hamilton and Cartan Spaces of Order k. Applications to Hamiltonian Relativistic Optics.- 11.1 The Space GH(kn).- 11.2 Metrical N-Linear Connections.- 11.3 Hamiltonian Relativistic Optics.- 11.4 The Metrical Almost Contact Structure of the Space GH(kn).- 11.5 Generalized Cartan Space of Order k.- References.ReviewsFrom the reviews: The book is devoted to an extensive study of formal-geometric properties of higher-order nondegenerate one-dimensional variational integrals. ... The author's approach is useful for the construction of geometric models ... . The book is precisely written, very clear, in principle self-contained and can be understood by non-specialists. (Jan Chrastina, Zentralblatt MATH, Vol. 1044 (19), 2004) From the reviews: <p> The book is devoted to an extensive study of formal-geometric properties of higher-order nondegenerate one-dimensional variational integrals. a ] The authora (TM)s approach is useful for the construction of geometric models a ] . The book is precisely written, very clear, in principle self-contained and can be understood by non-specialists. (Jan Chrastina, Zentralblatt MATH, Vol. 1044 (19), 2004) Author InformationTab Content 6Author Website:Countries AvailableAll regions |