The Geometrization Conjecture

Author:   John Morgan ,  Gang Tian
Publisher:   American Mathematical Society
Volume:   5
ISBN:  

9780821852019


Pages:   291
Publication Date:   30 May 2014
Format:   Hardback
Availability:   Temporarily unavailable   Availability explained
The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you.

Our Price $154.00 Quantity:  
Add to Cart

Share |

The Geometrization Conjecture


Add your own review!

Overview

Full Product Details

Author:   John Morgan ,  Gang Tian
Publisher:   American Mathematical Society
Imprint:   American Mathematical Society
Volume:   5
Weight:   0.692kg
ISBN:  

9780821852019


ISBN 10:   0821852019
Pages:   291
Publication Date:   30 May 2014
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Temporarily unavailable   Availability explained
The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you.

Table of Contents

Introduction Geometric and analytic results for Ricci flow with surgery Ricci flow with surger Limits as t?? Local results valid for large time Proofs of the three propositions Locally volume collapsed 3-manifolds Introduction to part II The collapsing theorem Overview of the rest of the argument Basics of Gromov-Hausdorff convergence Basics of Alexandrov spaces 2-dimensional Alexandrov spaces 3-dimensional analogues The global result The equivariant case The equivariant case Bibliography Glossary of symbols Index

Reviews

In the introduction the authors give a good outline of the proof so the reader can catch the spirit of such a complex proof. In the course of proving the conjecture, the authors apply very difficult tools reviewed in the book. They give a good survey on Ricci flows with surgery on 3-dimensional manifolds and they discuss in details the properties of the Hausdorff-Gromov distance and the theory of Alexandrov spaces . - Janos Kincses, Acta Sci. Math. (Szeged).


Author Information

John Morgan, Simons Center for Geometry and Physics, Stony Brook University, NY. Gang Tian, Princeton University, NJ, and Peking University, Beijing, China.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List