The Effect of Indenter Ball Radius on the Static Load Capacity of the Superelastic 60niti for Rolling Element Bearings

Author:   National Aeronautics and Space Adm Nasa
Publisher:   Independently Published
ISBN:  

9781794412682


Pages:   32
Publication Date:   23 January 2019
Format:   Paperback
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Our Price $50.13 Quantity:  
Add to Cart

Share |

The Effect of Indenter Ball Radius on the Static Load Capacity of the Superelastic 60niti for Rolling Element Bearings


Add your own review!

Overview

Static load capacity is a critical design parameter for rolling element bearings used in space mechanisms because of the potential for Brinell (surface dent) damage due to shock and vibration loading events during rocket launch. Brinell damage to bearing raceways can lead to torque variations (noise) and reduced bearing life. The growing use of ceramic rolling elements with high stiffness in hybrid bearings exacerbates the situation. A new family of hard yet resilient materials based upon nickel-titanium is emerging to address such bearing challenges. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx. 100 GPa) and has been shown to endure higher indentation loads than conventional and high performance steel. Indentation load capacity has been reported for relatively large (12.7 mm diameter) ceramic (Si3N4) indenter balls pressed against flat plates of 60NiTi. In order to develop damage load threshold criteria applicable to a wide range of bearing designs and sizes, the effects of indenter ball radius and the accuracy of interpolation of the Hertz contact stress relations for 60NiTi must be ascertained. In this paper, results of indentation tests involving ceramic balls ranging from 6.4 to 12.7 mm in diameter and highly polished 60NiTi flat plates are presented. When the resulting dent depth data for all the indenter ball sizes are normalized using the Hertz equations, the data (dent depth versus stress) are comparable. Thus when designing bearings made from 60NiTi, the Hertz stress relations can be applied with relative confidence over a range of rolling element sizes and internal geometries. Dellacorte, Christopher and Moore, Lewis E. Glenn Research Center; Marshall Space Flight Center NASA/TM-2014-216627, GRC-E-DAA-TN13462

Full Product Details

Author:   National Aeronautics and Space Adm Nasa
Publisher:   Independently Published
Imprint:   Independently Published
Dimensions:   Width: 21.60cm , Height: 0.20cm , Length: 27.90cm
Weight:   0.100kg
ISBN:  

9781794412682


ISBN 10:   1794412689
Pages:   32
Publication Date:   23 January 2019
Audience:   General/trade ,  General
Format:   Paperback
Publisher's Status:   Active
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Table of Contents

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List