|
![]() |
|||
|
||||
OverviewThis thesis presents an accurate and advanced numerical methodology to remedy difficulties such as direct numerical simulation of magnetohydrodynamic (MHD) flow in computational fluid dynamics (CFD), grid generation processes in tokamak fusion facilities, and the coupling between the surface tension force and Lorentz force in the metallurgical industry. In addition, on the basis of the numerical platform it establishes, it also investigates selected interesting topics, e.g. single bubble motion under the influence of either vertical or horizontal magnetic fields. Furthermore, it confirms the relation between the bubble’s path instability and wake instability, and observes the anisotropic (isotropic) effect of the vertical (horizontal) magnetic field on the vortex structures, which determines the dynamic behavior of the rising bubble. The direct numerical simulation of magnetohydrodynamic (MHD) flows has proven difficult in the field of computational fluid dynamic (CFD) research, because it not only concerns the coupling of the equations governing the electromagnetic field and the fluid motion, but also calls for suitable numerical methods for computing the electromagnetic field. In tokamak fusion facilities, where the MHD effect is significant and the flow domain is complex, the process of grid generation requires considerable time and effort. Moreover, in the metallurgical industry, where multiphase MHD flows are usually encountered, the coupling between the surface tension force and Lorentz force adds to the difficulty of deriving direct numerical simulations. Full Product DetailsAuthor: Jie ZhangPublisher: Springer Verlag, Singapore Imprint: Springer Verlag, Singapore Edition: Softcover reprint of the original 1st ed. 2019 Weight: 0.454kg ISBN: 9789811338809ISBN 10: 9811338809 Pages: 145 Publication Date: 16 December 2018 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of Contents Introduction.- Governing Equations.- Numerical schemes.- The validations of the numerical methodology.- The argon bubble rising in the liquid GaInSn under the influence of a vertical magnetic field.- The argon bubble rising in the liquid GaInSn under the influence of a horizontal magnetic field.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |