The Design of a Practical Enterprise Safety Management System

Author:   Hossam A. Gabbar ,  Kazuhiko Suzuki
Publisher:   Springer-Verlag New York Inc.
Edition:   2004 ed.
ISBN:  

9781402029486


Pages:   231
Publication Date:   14 January 2005
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $393.36 Quantity:  
Add to Cart

Share |

The Design of a Practical Enterprise Safety Management System


Overview

This book presents design guidelines and implementation approaches for enterprise safety management system as integrated within enterprise integrated systems. It shows new model-based safety management where process design automation is integrated with enterprise business functions and components. It proposes new system engineering approach addressed to new generation chemical industry. It will help both the undergraduate and professional readers to build basic knowledge about issues and problems of designing practical enterprise safety management system, while presenting in clear way, the system and information engineering practices to design enterprise integrated solution.

Full Product Details

Author:   Hossam A. Gabbar ,  Kazuhiko Suzuki
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   2004 ed.
Dimensions:   Width: 21.00cm , Height: 1.50cm , Length: 29.70cm
Weight:   1.190kg
ISBN:  

9781402029486


ISBN 10:   1402029489
Pages:   231
Publication Date:   14 January 2005
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

1. Overview.- 1.1. Abstract. 1.2. Structure of the Book. 1.3. Problem Statement. 1.4. Safety Management. 1.5. Benefits to Business. 1.6. Research Significance. 2. Background.- 2.1. Industrial Practices. 2.2. Literature Review. 2.3. Commercial Products for Computer-Aided Safety Engineering. 3. Theoretical & Methodological Framework.- 3.1. Research Approach. 3.2. Object-Oriented Modeling Framework. 3.3. Plant Lifecycle OO Model Representation. 3.4. Plant Safety Model. 3.5. Fault Propagation Modeling. 4. Plant Enterprise Engineering Environment (PEEE).- 4.1. PEEE Functional Analysis. 4.2. Information Technology Infrastructure. 4.3. PEEE System Architecture. 4.4. PEEE Components. 4.5. CAPE-PSP. 5. Plant Modeling Environment (CAPE-ModE).- 5.1. CAPE-ModE Functional Analysis. 5.2. CAPE-ModE System Architecture. 5.3. CAPE-Mode Design Specifications. 5.4. Model Representation within CAPE-ModE. 5.4.1. UML Formal Definition Initiatives. 5.5. Mechanism. 5.6. Prototype CAPE-ModE. 6. Analysis of CAPE-SAFE.- 6.1. Object-Oriented Analysis Methodology. 6.2. Business Profile 'As Is'. 6.3. Business Enterprise Directions 'To Be'. 6.4. Requirements Analysis. 6.5. Safety Solution Challenges. 6.6. Process Threads. 6.7. Business Process Chart Diagrams. 6.8. Safety Design. 7. CAPE-SAFE Design.- 7.1. CAPE-SAFE Components. 7.2. CAPE-SAFE Integration in PEEE. 7.3. CAPE-SAFE Implementation within PEEE. 7.4. CAPE-SAFE Prototype System Development. 7.5. CAPE-SAFE Function Decomposition. 7.6. Positioning with CAPE-OPEN. 8. Mechanism.- 8.1. Safety Data Management. 8.2. Physical Data Model Specifications. 8.3. Automated Hazard Evaluation Results Structuring. 8.4. Safety Regulations. 8.5. Safety Procedures. 8.6. Safety Training. 9. Case Studies.- 9.1. Examples from HDS Plant. 9.2. Cause – Consequence Analysis of Reactor CGU using CAPE-SAFE.9.3. Examples from PVC Plant. 9.4. Examples from Oil Refinery. 9.5. CAPE-SAFE Utilization with Operator Interface System. 9.6. CAPE-SAFE Utilization with Plant Design Model. 9.7. CAPE-SAFE Utilization with Fault Detection System. 9.8. CAPE-SAFE Utilization with RCM-Based CMMS. 10. Discussion.- 11. Conclusion.- 12. Recommendations and Future Research.- References.- Appendices.- Appendix (1) Highlights on UML Standards from OMG. Appendix (2) Study on Middleware Technology. Appendix (3) Physical Data Model of CAPE-SAFE. Appendix (4) Java Source Code of PEEE. Appendix (5) Cause/Consequence Scenarios of Reactor Unit in HDS Plant.-Appendix (6) Useful Web Links. Appendix (7) Molecular Modeling Impact on CAPE-SAFE. Appendix (8) Manufacturing Process Modeling

Reviews

Author Information

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List