The Construction of Spin Eigenfunctions: An Exercise Book

Author:   Ruben Pauncz
Publisher:   Springer Science+Business Media
Edition:   2000 ed.
ISBN:  

9780306464003


Pages:   192
Publication Date:   30 June 2000
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $393.36 Quantity:  
Add to Cart

Share |

The Construction of Spin Eigenfunctions: An Exercise Book


Add your own review!

Overview

Construction of Spin Eigenfunctions: An Exercise Book presents all aspects connected with the construction of spin eigenfunctions, and their relationship with many-electron antisymmetric wave functions. This book treats new algorithms and spin-coupled valence bonds, which no previous books have.

Full Product Details

Author:   Ruben Pauncz
Publisher:   Springer Science+Business Media
Imprint:   Kluwer Academic/Plenum Publishers
Edition:   2000 ed.
Dimensions:   Width: 15.20cm , Height: 1.60cm , Length: 22.90cm
Weight:   1.070kg
ISBN:  

9780306464003


ISBN 10:   0306464004
Pages:   192
Publication Date:   30 June 2000
Audience:   College/higher education ,  Professional and scholarly ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

1. The Spin Operator and Spin Functions.- 1.1 Introduction.- 1.2 Spin operators and Pauli matrices.- 1.3 Spin functions.- 1.4 The Dirac identity.- 1.5 Square brackets of spin functions.- 1.6 Graphical representation of the primitive spin functions.- 2. Genealogical Construction of Spin Eigenfunctions.- 2.1 Addition theorem of angular momenta.- 2.2 Addition theorem of spin forNelectrons.- 2.3 The spin degeneracy.- 2.4 Branching diagram symbol.- 2.5 Special properties of the branching diagram functions.- 2.6 The coefficient of a primitive spin function in a given branching diagram function.- 3. Serber Spin Functions.- 3.1 Serber spin functions.- 3.2 Geminal spin product functions. Serber path diagram.- 3.3 Serber branching diagram.- 3.4 Recursion formulas for the highest component.- 3.5 Special properties of the Serber functions.- 3.6 The coefficient of a geminal product in a given Serber function.- 3.7 The algorithm of Carrington and Doggett.- 4. Projected Spin Eigenfunctions.- 4.1 Projection operator.- 4.2 Expanded form of the projected function (Löwdin).- 4.3 Projection of other primitive functions.- 4.4 Relation between the projected functions and the branching diagram functions.- 4.5 Calculation of the overlap matrix of the projected functions.- 5. Spin-Paired Spin Eigenfunctions.- 5.1 Spin-paired spin functions.- 5.2 The Rumer algorithm for the selection of linearly independent spin-paired spin functions.- 5.3 Extended Rumer diagrams (Simonetta).- 5.4 The leading term (Simonetta).- 5.5 Linear independence of spin-paired eigenfunctions.- 5.6 Overlap integrals between Rumer functions..- 6. The Symmetric Group.- 6.1 Basic notions of the symmetric group.- 6.2 Classes of the symmetric group.- 6.3 Representations of the symmetric group.- 6.4 Young tableaux.- 6.5Young’s orthogonal representation.- 6.6 The conjugate representation.- 6.7 The symmetric group algebra.- 6.8 The Young operator.- 7. Representations of SNGenerated by Spin Eigenfunctions.- 7.1 Representations of the symmetric group generated by the branching diagram functions.- 7.2 Yamanouchi-Kotani method for the representations.- 7.3 Branching diagram functions and Young tableaux.- 7.4 Representations of SNgenerated by the projected spin functions.- 7.5 Calculations of A(P) by the Rettrup-Pauncz algorithm.- 7.6 Correspondence between spin-paired functions and Young tableaux.- 7.7 Generation of projected spin functions by Young operators.- 8. Combination of Spatial and Spin Functions.- 8.1 Introduction.- 8.2 Antisymmetric wave function.- 8.3 Combination of spatial and spin functions.- 8.4 Representations of SNby the spatial functions ? jiS.- 9. Calculation of the Hamiltonian Matrix.- 9.1 Spin-free Hamiltonian.- 9.2 Branching diagram spin functions.- 9.3 The determinantal form of the wave function.- 9.4 Serber spin functions.- 9.5 Projected spin functions.- 9.6 Valence—bond spin function.- 9.7 Many—configuration wave functions.- 10. Spin-Coupled Functions.- 10.1 Introduction.- 10.2 Historical development.- 10.3 Spin—coupled wave functions.- 10.4 Spin—coupled valence—bond method.- 10.5 Core—valence separation.- 10.6 SPINS, computer program.- 11. Solutions to the Exercises.- 11.1 Chapter 1.- 11.2 Chapter 2.- 11.3 Chapter 3.- 11.4 Chapter 4.- 11.5 Chapter 5.- 11.6 Chapter 6.- 11.7 Chapter 7.- 11.8 Chapter 8.- 12. Index.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List