The Brauer–Grothendieck Group

Author:   Jean-Louis Colliot-Thélène ,  Alexei N. Skorobogatov
Publisher:   Springer Nature Switzerland AG
Edition:   1st ed. 2021
Volume:   71
ISBN:  

9783030742478


Pages:   450
Publication Date:   31 July 2021
Format:   Hardback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $369.57 Quantity:  
Add to Cart

Share |

The Brauer–Grothendieck Group


Add your own review!

Overview

This monograph provides a systematic treatment of the Brauer group of schemes, from the foundational work of Grothendieck to recent applications in arithmetic and algebraic geometry. The importance of the cohomological Brauer group for applications to Diophantine equations and algebraic geometry was discovered soon after this group was introduced by Grothendieck. The Brauer–Manin obstruction plays a crucial role in the study of rational points on varieties over global fields. The birational invariance of the Brauer group was recently used in a novel way to establish the irrationality of many new classes of algebraic varieties. The book covers the vast theory underpinning these and other applications. Intended as an introduction to cohomological methods in algebraic geometry, most of the book is accessible to readers with a knowledge of algebra, algebraic geometry and algebraic number theory at graduate level. Much of the more advanced material is not readily available inbook form elsewhere; notably, de Jong’s proof of Gabber’s theorem, the specialisation method and applications of the Brauer group to rationality questions, an in-depth study of the Brauer–Manin obstruction, and proof of the finiteness theorem for the Brauer group of abelian varieties and K3 surfaces over finitely generated fields. The book surveys recent work but also gives detailed proofs of basic theorems, maintaining a balance between general theory and concrete examples. Over half a century after Grothendieck's foundational seminars on the topic, The Brauer–Grothendieck Group is a treatise that fills a longstanding gap in the literature, providing researchers, including research students, with a valuable reference on a central object of algebraic and arithmetic geometry.

Full Product Details

Author:   Jean-Louis Colliot-Thélène ,  Alexei N. Skorobogatov
Publisher:   Springer Nature Switzerland AG
Imprint:   Springer Nature Switzerland AG
Edition:   1st ed. 2021
Volume:   71
Weight:   0.869kg
ISBN:  

9783030742478


ISBN 10:   3030742474
Pages:   450
Publication Date:   31 July 2021
Audience:   Professional and scholarly ,  College/higher education ,  Professional & Vocational ,  Postgraduate, Research & Scholarly
Format:   Hardback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1 Galois Cohomology.- 2 Étale Cohomology.- 3 Brauer Groups of Schemes.- 4 Comparison of the Two Brauer Groups, II.- 5 Varieties Over a Field.- 6 Birational Invariance.- 7 Severi–Brauer Varieties and Hypersurfaces.- 8 Singular Schemes and Varieties.- 9 Varieties with a Group Action.- 10 Schemes Over Local Rings and Fields.- 11 Families of Varieties.- 12 Rationality in a Family.- 13 The Brauer–Manin Set and the Formal Lemma.- 14 Are Rational Points Dense in the Brauer–Manin Set?.- 15 The Brauer–Manin Obstruction for Zero-Cycles.- 16 Tate Conjecture, Abelian Varieties and K3 Surfaces.- Bibliography.- Index.

Reviews

This book has collected in one place much of the fundamental cohomological theory of the Brauer group, along with excellent references. It then gives some coverage of further results, especially on the two important topics of obstructions to rationality and obstructions to the Hasse principle. For whatever is not included in this book, it gives a thorough and coherent overview of the relevant literature. Approximately four hundred references are given. (Thomas Benedict Williams, Mathematical Reviews, September, 2022)


“The book gives a comprehensive, clear, up-to date presentation of the theory, including most proofs. A particular strength is that it nicely collects many results, examples and counterexamples from various areas of algebraic and arithmetic geometry … . the book fills a wide gap and is a most welcome addition to the literature.” (Stefan Schröer, zbMATH 1490.14001, 2022) “This book has collected in one place much of the fundamental cohomological theory of the Brauer group, along with excellent references. It then gives some coverage of further results, especially on the two important topics of obstructions to rationality and obstructions to the Hasse principle. For whatever is not included in this book, it gives a thorough and coherent overview of the relevant literature. Approximately four hundred references are given.” (Thomas Benedict Williams, Mathematical Reviews, September, 2022)


Author Information

Jean-Louis Colliot-Thélène works in arithmetic algebraic geometry. He contributed to the study of rational points and of zero-cycles on rationally connected varieties. This involved the use of torsors and the Brauer–Manin obstruction. He applied results from algebraic K-theory (unramified cohomology) to rationality problems, also in complex algebraic geometry. He is the author of some 150 research papers, many written with various collaborators. Jean-Louis Colliot-Thélène received the Fermat prize and a Grand Prix de l'Académie des Sciences de Paris. Alexei Skorobogatov works in arithmetic algebraic geometry with focus on rational points on algebraic varieties, the Brauer group and the Brauer–Manin obstruction, K3 surfaces and abelian varieties. He is the author of the book Torsors and Rational Points and over 75 research papers. Alexei Skorobogatov is the recipient of a Whitehead prize of the London Mathematical Society.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List