|
![]() |
|||
|
||||
OverviewThis thesis conceptualizes and implements a new framework for designing materials that are far from equilibrium. Starting with state-of-the-art optimization engines, it describes an automated system that makes use of simulations and 3D printing to find the material that best performs a user-specified goal. Identifying which microscopic features produce a desired macroscopic behavior is a problem at the forefront of materials science. This task is materials design, and within it, new goals and challenges have emerged from tailoring the response of materials far from equilibrium. These materials hold promising properties such as robustness, high strength, and self-healing. Yet without a general theory to predict how these properties emerge, designing and controlling them presents a complex and important problem. As proof of concept, the thesis shows how to design the behavior of granular materials, i.e., collections of athermal, macroscopic identical objects, by identifying the particle shapes that form the stiffest, softest, densest, loosest, most dissipative and strain-stiffening aggregates. More generally, the thesis shows how these results serve as prototypes for problems at the heart of materials design, and advocates the perspective that machines are the key to turning complex material forms into new material functions. Full Product DetailsAuthor: Marc Z. MiskinPublisher: Springer International Publishing AG Imprint: Springer International Publishing AG Edition: Softcover reprint of the original 1st ed. 2016 Weight: 1.825kg ISBN: 9783319369839ISBN 10: 3319369830 Pages: 89 Publication Date: 23 August 2016 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsIntroduction.- Artificial Evolution.- Optimization.- Inverse Problems.- Transition of Designs.- Online Design.- Conclusions.ReviewsAuthor InformationMarc Miskin completed his doctoral studies at the James Franck Institute at The University of Chicago, Chicago, US with Professor Heinrich Jaeger. He is now affiliated with the Laboratory of Atomic and Solid State Physics at Cornell University, Ithaca, US. Tab Content 6Author Website:Countries AvailableAll regions |