|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Michael HuPublisher: APress Imprint: APress Edition: 1st ed. Weight: 0.588kg ISBN: 9781484296059ISBN 10: 1484296052 Pages: 287 Publication Date: 09 December 2023 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsPart I: Foundation.- Chapter 1: Introduction to Reinforcement Learning.- Chapter 2: Markov Decision Processes.- Chapter 3: Dynamic Programming.- Chapter 4: Monte Carlo Methods.- Chapter 5: Temporal Difference Learning.- Part II: Value Function Approximation.- Chapter 6: Linear Value Function Approximation.- Chapter 7: Nonlinear Value Function Approximation.- Chapter 8: Improvement to DQN.- Part III: Policy Approximation.- Chapter 9: Policy Gradient Methods.- Chapter 10: Problems with Continuous Action Space.- Chapter 11: Advanced Policy Gradient Methods.- Part IV: Advanced Topics.- Chapter 12: Distributed Reinforcement Learning.- Chapter 13: Curiosity-Driven Exploration.- Chapter 14: Planning with a Model – AlphaZero.ReviewsAuthor InformationMichael Hu is a skilled software engineer with over a decade of experience in designing and implementing enterprise-level applications. He's a passionate coder who loves to delve into the world of mathematics and has a keen interest in cutting-edge technologies like machine learning and deep learning, with a particular interest in deep reinforcement learning. He has build various open-source projects on Github, which closely mimic the state-of-the-art reinforcement learning algorithms developed by DeepMind, such as AlphaZero, MuZero, and Agent57. Fluent in both English and Chinese, Michael currently resides in the bustling city of Shanghai, China. Tab Content 6Author Website:Countries AvailableAll regions |