|
![]() |
|||
|
||||
OverviewVol. 1 of Lars Hormander's influential 4-volume treatise is a detailed exposition of the theory of distributions.From the reviews: ""In order to illustrate the richness of the book: in my review of the 1983 edition [...] I gave a list of 20 subjects which were new compared to Hormander's book of 1963. Most of these subjects concern important, basic and highly nontrivial theorems in analysis. Hormander's treatment of these is extremely clear and efficient and often highly original. [...] Most of the exercises are witty, with an interesting point. The phrasing of both the exercises and the answers and hints is very careful [...] In all, the book can be highly recommended, both as a textbook for advanced students, and as background and reference for introductory courses on distributions and Fourier analysis.""J.J. Duistermaat in Mededelingen van het Wiskundig Genootschap Full Product DetailsAuthor: Lars HörmanderPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 2nd ed. 2003 Dimensions: Width: 15.50cm , Height: 2.30cm , Length: 23.50cm Weight: 0.694kg ISBN: 9783540006626ISBN 10: 3540006621 Pages: 440 Publication Date: 07 July 2003 Audience: College/higher education , Professional and scholarly , Undergraduate , Postgraduate, Research & Scholarly Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsI. Test Functions.- Summary.- 1.1. A review of Differential Calculus.- 1.2. Existence of Test Functions.- 1.3. Convolution.- 1.4. Cutoff Functions and Partitions of Unity.- Notes.- II. Definition and Basic Properties of Distributions.- Summary.- 2.1. Basic Definitions.- 2.2. Localization.- 2.3. Distributions with Compact Support.- Notes.- III. Differentiation and Multiplication by Functions.- Summary.- 3.1. Definition and Examples.- 3.2. Homogeneous Distributions.- 3.3. Some Fundamental Solutions.- 3.4. Evaluation of Some Integrals.- Notes.- IV. Convolution.- Summary.- 4.1. Convolution with a Smooth Function.- 4.2. Convolution of Distributions.- 4.3. The Theorem of Supports.- 4.4. The Role of Fundamental Solutions.- 4.5. Basic Lp Estimates for Convolutions.- Notes.- V. Distributions in Product Spaces.- Summary.- 5.1. Tensor Products.- 5.2. The Kernel Theorem.- Notes.- VI. Composition with Smooth Maps.- Summary.- 6.1. Definitions.- 6.2. Some Fundamental Solutions.- 6.3. Distributions ona Manifold.- 6.4. The Tangent and Cotangent Bundles.- Notes.- VII. The Fourier Transformation.- Summary.- 7.1. The Fourier Transformation in ? and in ?’.- 7.2. Poisson’s Summation Formula and Periodic Distributions.- 7.3. The Fourier-Laplace Transformation in ?’.- 7.4. More General Fourier-Laplace Transforms.- 7.5. The Malgrange Preparation Theorem.- 7.6. Fourier Transforms of Gaussian Functions.- 7.7. The Method of Stationary Phase.- 7.8. Oscillatory Integrals.- 7.9. H(s), Lp and Hölder Estimates.- Notes.- VIII. Spectral Analysis of Singularities.- Summary.- 8.1. The Wave Front Set.- 8.2. A Review of Operations with Distributions.- 8.3. The Wave Front Set of Solutions of Partial Differential Equations.- 8.4. The Wave Front Set with Respect to CL.- 8.5. Rules of Computation for WFL.- 8.6. WFL for Solutions of Partial Differential Equations.- 8.7. Microhyperbolicity.- Notes.- IX. Hyperfunctions.- Summary.- 9.1. Analytic Functionals.- 9.2. General Hyperfunctions.- 9.3. The Analytic WaveFront Set of a Hyperfunction.- 9.4. The Analytic Cauchy Problem.- 9.5. Hyperfunction Solutions of Partial Differential Equations.- 9.6. The Analytic Wave Front Set and the Support.- Notes.- Exercises.- Answers and Hints to All the Exercises.- Index of Notation.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |