|
![]() |
|||
|
||||
OverviewA guide for using computational text analysis to learn about the social world. From social media posts and text messages to digital government documents and archives, researchers are bombarded with a deluge of text reflecting the social world. This textual data gives unprecedented insights into fundamental questions in the social sciences, humanities, and industry. Meanwhile new machine learning tools are rapidly transforming the way science and business are conducted. Text as Data shows how to combine new sources of data, machine learning tools, and social science research design to develop and evaluate new insights. Text as Data is organised around the core tasks in research projects using text - representation, discovery, measurement, prediction, and causal inference. The authors offer a sequential, iterative, and inductive approach to research design. Each research task is presented complete with real-world applications, example methods, and a distinct style of task-focused research. Bridging many divides - computer science and social science, the qualitative and the quantitative, and industry and academia - Text as Data is an ideal resource for anyone wanting to analyse large collections of text in an era when data is abundant and computation is cheap, but the enduring challenges of social science remain. Overview of how to use text as data Research design for a world of data deluge Examples from across the social sciences and industry Full Product DetailsAuthor: Justin Grimmer , Margaret E. Roberts , Brandon M. StewartPublisher: Princeton University Press Imprint: Princeton University Press ISBN: 9780691207551ISBN 10: 0691207550 Pages: 360 Publication Date: 29 March 2022 Audience: College/higher education , Professional and scholarly , General/trade , Tertiary & Higher Education , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviews"""Among the metaverse of possible books on Text as Data that could have been published . . . I was pleased that my universe produced this one. I will assign this book as a critical part of my own course on content analysis for years to come, and it has already altered and improved the coherence of my own vocabulary and articulation for several critical choices underlying the process of turning text into data. . . . Highly recommend.""---James Evans, Sociological Methods & Research" Among the metaverse of possible books on Text as Data that could have been published . . . I was pleased that my universe produced this one. I will assign this book as a critical part of my own course on content analysis for years to come, and it has already altered and improved the coherence of my own vocabulary and articulation for several critical choices underlying the process of turning text into data. . . . Highly recommend. ---James Evans, Sociological Methods & Research Author InformationJustin Grimmer is professor of political science and a senior fellow at the Hoover Institution at Stanford University. Twitter @justingrimmer Margaret E. Roberts is associate professor in political science and the Halcolu Data Science Institute at the University of California, San Diego. Twitter @mollyeroberts Brandon M. Stewart is assistant professor of sociology and Arthur H. Scribner Bicentennial Preceptor at Princeton University. Twitter @b_m_stewart Tab Content 6Author Website:Countries AvailableAll regions |