|
![]() |
|||
|
||||
OverviewC* tensor categories are a point of contact where Operator Algebras and Quantum Field Theory meet. They are the underlying unifying concept for homomorphisms of (properly infinite) von Neumann algebras and representations of quantum observables. The present introductory text reviews the basic notions and their cross-relations in different contexts. The focus is on Q-systems that serve as complete invariants, both for subfactors and for extensions of quantum field theory models. It proceeds with various operations on Q-systems (several decompositions, the mirror Q-system, braided product, centre and full centre of Q-systems) some of which are defined only in the presence of a braiding. The last chapter gives a brief exposition of the relevance of the mathematical structures presented in the main body for applications in Quantum Field Theory (in particular two-dimensional Conformal Field Theory, also with boundaries or defects). Full Product DetailsAuthor: Marcel Bischoff , Yasuyuki Kawahigashi , Roberto Longo , Karl-Henning RehrenPublisher: Springer International Publishing AG Imprint: Springer International Publishing AG Edition: 2015 ed. Volume: 3 Dimensions: Width: 15.50cm , Height: 0.60cm , Length: 23.50cm Weight: 1.708kg ISBN: 9783319143002ISBN 10: 331914300 Pages: 94 Publication Date: 23 January 2015 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsThe volume gives a coherent overview of some recent mathematical developments in the study of endomorphisms of von Neumann algebras and their applications in algebraic quantum field theory. ... every chapter has its own list of references, which points the reader to more detailed literature. ... Anyone who wishes to understand the recent advances in our understanding of endomorphisms of von Neumann algebras ... should find this book a valuable resource. (Ko Sanders, Mathematical Reviews, January, 2016) Author InformationTab Content 6Author Website:Countries AvailableAll regions |