|
![]() |
|||
|
||||
OverviewDer Stoffumfang dieser modernen Darstellung orientiert sich an den Erfordernissen der Vorlesungen, die an Technischen Hochschulen und Universitäten für Studenten technischer Fachrichtungen angeboten werden; auch Hörer benachbarter Fächer wie der Physik, der angewandten Mathematik und Informatik werden angesprochen. Das Buch erläutert die grundlegenden Begriffe an einfachen Systemen und führt hin bis zu den Themen mit aktueller Bedeutung wie Modalanalyse, Fouriertransformation und Zufallsschwingungen. Jedes Kapitel wird durch Übungsaufgaben mit Lösungshinweisen abgeschlossen. Das Werk eignet sich aufgrund seines systematischen Aufbaus und seiner klaren Darstellung nicht nur zum Gebrauch neben Vorlesungen, sondern auch zum Selbststudium für den Ingenieur in der Praxis. Full Product DetailsAuthor: Stefan Otterbein , Peter HagedornPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Dimensions: Width: 17.00cm , Height: 2.50cm , Length: 24.40cm Weight: 0.828kg ISBN: 9783540180968ISBN 10: 3540180966 Pages: 468 Publication Date: 03 November 1987 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Out of stock ![]() The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Language: German Table of Contents1 Grundbegriffe.- 1.1 Einfuhrung.- 1.2 Periodische Schwingungen.- 1.3 Harmonische Schwingungen.- 1.3.1 Die Parameter harmonischer Schwingungen.- 1.3.2 Komplexe Schreibweise harmonischer Schwingungen.- 1.3.3 UEberlagerung harmonischer Schwingungen.- 1.4 Darstellung periodischer Funktionen durch FOURIERreihen.- 1.4.1 FOURIERkoeffizienten, Amplituden- und Phasenspektrum.- 1.4.2 Komplexe FOURIERreihen.- 1.5 Aufgaben zu Kapitel 1.- Literatur zu Kapitel 1.- 2 Systeme mit einem Freiheitsgrad.- 2.1 Die Methode der kleinen Schwingungen.- 2.2 Phasenkurven.- 2.3 Freie ungedampfte Schwingungen.- 2.4 Freie gedampfte Schwingungen.- 2.5 Erzwungene Schwingungen bei harmonischer Erregung.- 2.5.1 Harmonische Kraftanregung.- 2.5.2 Leistung und Arbeit bei harmonischer Kraftanregung..- 2.5.3 Andere Arten harmonischer Erregung.- 2.5.4 Mechanische Impedanz.- 2.5.5 Strukturdampfung und andere Dampfungsarten.- 2.6 Erzwungene Schwingungen bei periodischer Erregung.- 2.6.1 Behandlung im Zeitbereich.- 2.6.2 Behandlung im Frequenzbereich.- 2.7 Erzwungene Schwingungen bei beliebiger Erregung.- 2.7.1 Sprung- und Stossantwort.- 2.7.2 DUHAMEL- und Faltungsintegral.- 2.8 Aufgaben zu Kapitel 2.- Literatur zu Kapitel 2.- 3 Systeme mit zwei Freiheitsgraden.- 3.1 Freie ungedampfte Schwingungen.- 3.2 Erzwungene ungedampfte Schwingungen bei harmonischer Erregung.- 3.3 Freie gedampfte Schwingungen.- 3.4 Erzwungene gedampfte Schwingungen.- 3.5 Entartete Falle.- 3.5.1 Der Fall verschwindender Eigenwerte: semidefinite potentielle Energie.- 3.5.2 Systeme mit halben Freiheitsgraden .- 3.6 Gyroskopische Terme.- 3.7 Beispiele und Anwendungen.- 3.7.1 Kritische Drehzahl eines LAVAL-Laufers: Beispiel eines Systems mit einem doppelten Eigenwert.- 3.7.2 Schwingungstilgung.- 3.8 Aufgaben zu Kapitel 3.- Literatur zu Kapitel 3.- 4 Systeme mit endlich vielen Freiheitsgraden.- 4.1 Freie ungedampfte Schwingungen.- 4.1.1 Das Eigenwertproblem.- 4.1.2 Extremaleigenschaften der Eigenwerte, Einschliessungssatz.- 4.1.3 Das RITZ-Verfahren.- 4.1.4 Numerische Verfahren zur Loesung der Eigenwertprobleme.- 4.2 Freie gedampfte Schwingungen.- 4.3 Erzwungene Schwingungen.- 4.3.1 Harmonische Erregung.- 4.3.2 Allgemeine periodische Erregung.- 4.4 Systeme mit gyroskopischen Termen.- 4.5 Systeme mit zirkulatorischen Kraften.- 4.6 Experimentelle Modalanalyse.- 4.7 Aufgaben zu Kapitel 4.- Literatur zu Kapitel 4.- 5 Die FOURIERtransformation und ihre Anwendungen in der Schwingungslehre.- 5.1 Das FOURIERintegral als Verallgemeinerung der FOURIERreihen.- 5.2 Die wichtigsten Eigenschaften der FOURIERtransformation..- 5.3 Behandlung erzwungener Schwingungen im Frequenzbereich.- 5.4 Kreuzkorrelationsfunktion und Autokorrelationsfunktion..- 5.5 Anwendung auf Zufallsschwingungen.- 5.5.1 Grundbegriffe der Wahrscheinlichkeitsrechnung.- 5.5.2 Stochastische Prozesse und Schwingungen.- 5.5.3 Behandlung von Zufallsschwingungen mechanischer Systeme im Spektralbereich.- 5.6 Aufgaben zu Kapitel 5.- Literatur zu Kapitel 5.- Anhang: Korrespondenzen der FOURIERtransformation.- Namens- und Sachverzeichnis.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |