Systems-Level Feasibility Analysis of a Microsatellite Rendezvous With Non-Cooperative

Author:   Air Force Institute of Technology (U ,  Allen R Toso
Publisher:   Hutson Street Press
ISBN:  

9781025073538


Pages:   116
Publication Date:   22 May 2025
Format:   Hardback
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Our Price $81.71 Quantity:  
Add to Cart

Share |

Systems-Level Feasibility Analysis of a Microsatellite Rendezvous With Non-Cooperative


Overview

The United States is very dependant upon the use of space. Any threat to our ability to use it as desired deserves significant study. One such asymmetric threat is through the use of a microsatellite. The feasibility of using a microsatellite to accomplish an orbital rendezvous with a non-cooperative target is being evaluated. This study focused on identifying and further exploring the technical challenges involved in achieving a non-cooperative rendezvous. A systems engineering analysis and review of past research quickly led to a concentration on the guidance, navigation, and control (GNC) elements of the microsatellite operation. While both the control laws and orbit determination have been previously evaluated as feasible, the integration of the two remained in question. This research first validated past efforts prior to exploring the integration. Impulsive and continuous thrust control methods, and linear and nonlinear estimator filters were all candidate components to a potential system solution. A simple yet robust solution could not be found to meet reasonable rendezvous criteria, using essentially off-the-shelf technology and algorithms. Results reveal a simple linear filter is a misapplication and will not at all work. A nonlinear filter coupled with either a continuous or impulsive thrust controller was found to get somewhat close, but never close enough to attach to the target satellite. Successful GNC subsystem integration could only be achieved for a very simple case ignoring orbit perturbations such as the earth's oblateness. A top-level system architecture for a non-cooperative rendezvous microsatellite has been developed. The technical complexity, however, requires more complex algorithms to solve the rendezvous problem. This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Full Product Details

Author:   Air Force Institute of Technology (U ,  Allen R Toso
Publisher:   Hutson Street Press
Imprint:   Hutson Street Press
Dimensions:   Width: 15.60cm , Height: 0.80cm , Length: 23.40cm
Weight:   0.340kg
ISBN:  

9781025073538


ISBN 10:   1025073533
Pages:   116
Publication Date:   22 May 2025
Audience:   General/trade ,  General
Format:   Hardback
Publisher's Status:   Active
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Table of Contents

Reviews

Author Information

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List