|
![]() |
|||
|
||||
OverviewSystem theory is becoming increasingly important to medical applications. Yet, biomedical and digital signal processing researchers rarely have expertise in practical medical applications, and medical instrumentation designers usually are unfamiliar with system theory. System Theory and Practical Applications for Biomedical Signals bridges those gaps in a practical manner, showing how various aspects of system theory are put into practice by industry. The chapters are intentionally organized in groups of two chapters, with the first chapter describing a system theory technology, and the second chapter describing an industrial application of this technology. Each theory chapter contains a general overview of a system theory technology, which is intended as background material for the application chapter. Each application chapter contains a history of a highlighted medical instrument, summary of appropriate physiology, discussion of the problem of interest and previous empirical solutions, and review of a solution that utilizes the theory in the previous chapter. Biomedical and DSP academic researchers pursuing grants and industry funding will find its real-world approach extremely valuable. Its in-depth discussion of the theoretical issues will clarify for medical instrumentation managers how system theory can compensate for less-than-ideal sensors. With application MATLAB® exercises and suggestions for system theory course work included, the text also fills the need for detailed information for students or practicing engineers interested in instrument design. An Instructor Support FTP site is available from the Wiley editorial department: ftp://ftp.ieee.org/uploads/press/baura Full Product DetailsAuthor: Gail D. Baura (CardioDynamics International, San Diego, California)Publisher: John Wiley & Sons Inc Imprint: Wiley-IEEE Press Dimensions: Width: 18.30cm , Height: 3.00cm , Length: 26.40cm Weight: 0.943kg ISBN: 9780471236535ISBN 10: 0471236535 Pages: 480 Publication Date: 13 September 2002 Audience: Professional and scholarly , Professional and scholarly , Professional & Vocational , Postgraduate, Research & Scholarly Format: Hardback Publisher's Status: Active Availability: Out of stock ![]() The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Table of ContentsPreface. Nomenclature. I FILTERS. 1 System Theory and Frequency-Selective Filters. 2 Low Flow Rate Occlusion Detection Using Resistance Monitoring. 3 Adaptive Filters. 4 Improved Pulse Oximetry. 5 Time-Frequency and Time-Scale Analysis. 6 Improved Impedance Cardiography. II MODELS FOR REAL TIME PROCESSING. 7 Linear System Identification. 8 External Defibrillation Waveform Optimization. 9 Nonlinear System Identification. 10 Improved Screening for Cervical Cancer. 11 Fuzzy Models. 12 Continuous Noninvasive Blood Pressure Monitoring: Proof of Concept. III COMPARTMENTAL MODELS. 13 The Linear Compartmental Model. 14 Pharmacologic Stress Testing Using Closed-Loop Drug Delivery. 15 The Nonlinear Compartmental Model. 16 The Role of Nonlinear Compartmental Models in Development of Antiobesity Drugs. IV SYSTEM THEORY IMPLEMENTATION. 17 Algorithm Implementation. 18 The Need for More System Theory in Low-Cost Medical Applications. Glossary. Index.Reviews!this is a useful addition to the library of those who are involved in product development of technologies using complex signal processing. (Biomedical Instrumentation & Technology, May/June 2004) ...an excellent contribution to the current literature...well written... (IEEE Engineering in Medicine and Biology, July/August 2002) this is a useful addition to the library of those who are involved in product development of technologies using complex signal processing. ( Biomedical Instrumentation & Technology, May/June 2004) ...an excellent contribution to the current literature...well written... (IEEE Engineering in Medicine and Biology, July/August 2002) ...this is a useful addition to the library of those who are involved in product development of technologies using complex signal processing. (Biomedical Instrumentation & Technology, May/June 2004) ...an excellent contribution to the current literature...well written... (IEEE Engineering in Medicine and Biology, July/August 2002) Author InformationGAIL D. BAURA received a BSEE from Loyola Marymount University in 1984 and an MSEE and MSBME from Drexel University in 1987. She received a PhD in Bioengineering from the University of Washington in 1993. Between these degrees, Dr. Baura worked as a loop transmission systems engineer at AT&T Bell Laboratories. Since graduation, she has served in a variety of research positions at IVAC Corporation, Cardiotronics Systems, Alaris Medical Systems, and VitalWave Corporation. Dr. Baura is currently Vice President of Research at CardioDynamics. Her research interests are the application of system theory to patient monitoring and insulin metabolism. Tab Content 6Author Website:Countries AvailableAll regions |